pymc.to_inference_data — PyMC 5.22.0 documentation (original) (raw)
pymc.to_inference_data(trace=None, *, prior=None, posterior_predictive=None, log_likelihood=False, log_prior=False, coords=None, dims=None, sample_dims=None, model=None, save_warmup=None, include_transformed=False)[source]#
Convert pymc data into an InferenceData object.
All three of them are optional arguments, but at least one of trace
,prior
and posterior_predictive
must be present. For a usage example read theCreating InferenceData section on from_pymc
Parameters:
traceMultiTrace, optional
Trace generated from MCMC sampling. Output ofsample()
.
priordict, optional
Dictionary with the variable names as keys, and values numpy arrays containing prior and prior predictive samples.
posterior_predictivedict, optional
Dictionary with the variable names as keys, and values numpy arrays containing posterior predictive samples.
log_likelihoodbool or array_like of str, optional
List of variables to calculate log_likelihood. Defaults to False. If set to True, computes log_likelihood for all observed variables.
log_priorbool or array_like of str, optional
List of variables to calculate log_prior. Defaults to False. If set to True, computes log_prior for all unobserved variables.
coordsdict of {str: array_like}, optional
Map of coordinate names to coordinate values
dimsdict of {str: list of str}, optional
Map of variable names to the coordinate names to use to index its dimensions.
modelModel
, optional
Model used to generate trace
. It is not necessary to pass model
if inwith
context.
save_warmupbool, optional
Save warmup iterations InferenceData object. If not defined, use default defined by the rcParams.
include_transformedbool, optional
Save the transformed parameters in the InferenceData object. By default, these are not saved.
Returns: