Cartan–Brauer–Hua theorem (original) (raw)

About DBpedia

In abstract algebra, the Cartan–Brauer–Hua theorem (named after Richard Brauer, Élie Cartan, and Hua Luogeng) is a theorem pertaining to division rings. It says that given two division rings K ⊆ D such that xKx−1 is contained in K for every x not equal to 0 in D, either K is contained in the center of D, or K = D. In other words, if the unit group of K is a normal subgroup of the unit group of D, then either K = D or K is central .

Property Value
dbo:abstract In abstract algebra, the Cartan–Brauer–Hua theorem (named after Richard Brauer, Élie Cartan, and Hua Luogeng) is a theorem pertaining to division rings. It says that given two division rings K ⊆ D such that xKx−1 is contained in K for every x not equal to 0 in D, either K is contained in the center of D, or K = D. In other words, if the unit group of K is a normal subgroup of the unit group of D, then either K = D or K is central . (en) 抽象代數中,布勞威耳-加當-華定理是個有關除環的定理,以德國數學家理查德·布饒爾、法國數學家埃利·嘉當、以及中國數學家華羅庚命名。 給定兩個除環使得對於所有中非零的都有(亦即,的单位群是的单位群的正规子群),則要么被包含在的中心,要么。 (zh)
dbo:wikiPageExternalLink https://archive.org/details/topicsinalgebra00hers/page/368
dbo:wikiPageID 21911246 (xsd:integer)
dbo:wikiPageLength 1383 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1016909331 (xsd:integer)
dbo:wikiPageWikiLink dbr:Hua_Luogeng dbr:Richard_Brauer dbr:Normal_subgroup dbr:Élie_Cartan dbr:Center_(ring_theory) dbr:Abstract_algebra dbr:Division_ring dbc:Theorems_in_ring_theory dbr:Unit_group dbr:Springer-Verlag
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Harv dbt:Reflist dbt:Short_description dbt:Abstract-algebra-stub
dcterms:subject dbc:Theorems_in_ring_theory
gold:hypernym dbr:Theorem
rdf:type yago:WikicatTheoremsInAlgebra yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment In abstract algebra, the Cartan–Brauer–Hua theorem (named after Richard Brauer, Élie Cartan, and Hua Luogeng) is a theorem pertaining to division rings. It says that given two division rings K ⊆ D such that xKx−1 is contained in K for every x not equal to 0 in D, either K is contained in the center of D, or K = D. In other words, if the unit group of K is a normal subgroup of the unit group of D, then either K = D or K is central . (en) 抽象代數中,布勞威耳-加當-華定理是個有關除環的定理,以德國數學家理查德·布饒爾、法國數學家埃利·嘉當、以及中國數學家華羅庚命名。 給定兩個除環使得對於所有中非零的都有(亦即,的单位群是的单位群的正规子群),則要么被包含在的中心,要么。 (zh)
rdfs:label Cartan–Brauer–Hua theorem (en) 布劳威尔-加当-华定理 (zh)
owl:sameAs freebase:Cartan–Brauer–Hua theorem wikidata:Cartan–Brauer–Hua theorem dbpedia-zh:Cartan–Brauer–Hua theorem https://global.dbpedia.org/id/4gKNY
prov:wasDerivedFrom wikipedia-en:Cartan–Brauer–Hua_theorem?oldid=1016909331&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Cartan–Brauer–Hua_theorem
is dbo:wikiPageRedirects of dbr:Brauer-Cartan-Hua_theorem dbr:Cartan-Brauer-Hua_theorem dbr:Brauer–Cartan–Hua_theorem
is dbo:wikiPageWikiLink of dbr:Brauer-Cartan-Hua_theorem dbr:Ring_(mathematics) dbr:Ring_theory dbr:List_of_things_named_after_Élie_Cartan dbr:Cartan-Brauer-Hua_theorem dbr:Brauer–Cartan–Hua_theorem
is foaf:primaryTopic of wikipedia-en:Cartan–Brauer–Hua_theorem