Chinese restaurant process (original) (raw)

About DBpedia

確率論において、中華料理店過程(ちゅうかりょうりてんかてい、英: Chinese restaurant process)とは離散確率過程の一種で、各時刻nにおいて集合{1,2,…,n}の分割Bnが次のようなルールで決定されるようなものを指す。時刻n=1では、B1={1}であり、時刻nでの分割Bnから時刻n+1における分割Bn+1が次のように定まる。 1. * Bnがm個の部分からなるとき、各部分の大きさを|bi|, i=1,...,mとするなら、|bi|/(n+1)の確率でbiにn+1が追加される。 2. * 確率 1 / (n+1)で、大きさが1でn+1のみを含むものが新たな部分として追加される。 このような計算によりランダムに生成された分割は{1,...,n}のラベルを付け直しても、その分割が生成される確率が変化しない。

Property Value
dbo:abstract In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a restaurant.Imagine a restaurant with an infinite number of circular tables, each with infinite capacity. Customer 1 sits at the first table. The next customer either sits at the same table as customer 1, or the next table. This continues, with each customer choosing to either sit at an occupied table with a probability proportional to the number of customers already there (i.e., they are more likely to sit at a table with many customers than few), or an unoccupied table. At time n, the n customers have been partitioned among m ≤ n tables (or blocks of the partition). The results of this process are exchangeable, meaning the order in which the customers sit does not affect the probability of the final distribution. This property greatly simplifies a number of problems in population genetics, linguistic analysis, and image recognition. David J. Aldous attributes the restaurant analogy to and Lester Dubins in his 1983 book. (en) En teoría de la probabilidad, un proceso estocástico de restaurante chino es un tipo de proceso estocástico de , que es reminiscente al proceso de sentar clientes en las mesas de un restaurante chino, de ahí su nombre. Imagínese un restaurante chino con un número infinito de mesas circulares, cada una con una capacidad infinita. El primer cliente se sienta en una mesa no ocupada con probabilidad 1. En el paso (n+1)-ésimo un nuevo cliente escoge donde se sentarse de acuerdo con un proceso aleatorio que consiste en escoger una silla entre n+1 disponibles: o bien directamente a la izquierda de uno de los n clientes ya sentados, o bien en una mesa no ocupada. Después de n pasos, el valor del proceso estocástico del restaurante chino es una partición del conjunto de n clientes, donde las mesas son los bloques de la partición. Este problema tiene interés matemático, y algunas aplicaciones, y se ha estudiado la distribución de probabilidad de las posibles particiones tras n pasos. atribuye la analogía del restaurante chino para este proceso a y en su libro de 1983.​ (es) 確率論において、中華料理店過程(ちゅうかりょうりてんかてい、英: Chinese restaurant process)とは離散確率過程の一種で、各時刻nにおいて集合{1,2,…,n}の分割Bnが次のようなルールで決定されるようなものを指す。時刻n=1では、B1={1}であり、時刻nでの分割Bnから時刻n+1における分割Bn+1が次のように定まる。 1. * Bnがm個の部分からなるとき、各部分の大きさを|bi , i=1,...,mとするなら、
dbo:wikiPageExternalLink http://videolectures.net/icml05_jordan_dpcrp/ https://web.archive.org/web/20190327085650/https:/pdfs.semanticscholar.org/775e/5727f5df0cb9bf834af2ea2548a696c27a38.pdf
dbo:wikiPageID 4482900 (xsd:integer)
dbo:wikiPageLength 15664 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111143350 (xsd:integer)
dbo:wikiPageWikiLink dbr:Bayesian_statistics dbr:Probability_distribution dbr:Pólya_urn_model dbr:Nonparametric dbr:Bernoulli_distribution dbr:David_Aldous dbr:DNA_microarray dbr:Indian_buffet_process dbr:Preferential_attachment dbr:Unified_neutral_theory_of_biodiversity dbr:Pitman–Yor_process dbr:Gamma_function dbr:Linguistic_analysis dbc:Nonparametric_Bayesian_statistics dbr:Chinese_restaurant_table_distribution dbr:Lester_Dubins dbr:Population_genetics dbr:Partition_of_a_set dbr:Dirichlet_process dbr:Hilbert's_paradox_of_the_Grand_Hotel dbr:Probability_theory dbc:Stochastic_processes dbr:Digamma_function dbr:Michael_I._Jordan dbr:Pochhammer_k-symbol dbr:Exchangeable_random_variables dbr:Probability_measure dbr:Stochastic_process dbr:Stirling_numbers_of_the_first_kind dbr:Bayesian_methods dbr:Discrete-time dbr:Partition_of_an_integer dbr:Image_recognition dbr:Jim_Pitman dbr:Ewens_distribution dbr:Ewens_sampling_formula dbr:File:Chinese_Restaurant_Process_for_DP(0.5,H).webm
dbp:name Chinese restaurant table (en)
dbp:parameters (en)
dbp:type mass (en)
dbp:wikiPageUsesTemplate dbt:Other_uses dbt:Short_description dbt:Probability_distribution dbt:Stochastic_processes
dct:subject dbc:Nonparametric_Bayesian_statistics dbc:Stochastic_processes
gold:hypernym dbr:Process
rdf:type yago:WikicatNon-parametricBayesianMethods yago:WikicatStochasticProcesses yago:Ability105616246 yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Hypothesis105888929 yago:Idea105833840 yago:Know-how105616786 yago:Method105660268 yago:Model105890249 yago:PsychologicalFeature100023100 dbo:Election yago:StochasticProcess113561896
rdfs:comment 確率論において、中華料理店過程(ちゅうかりょうりてんかてい、英: Chinese restaurant process)とは離散確率過程の一種で、各時刻nにおいて集合{1,2,…,n}の分割Bnが次のようなルールで決定されるようなものを指す。時刻n=1では、B1={1}であり、時刻nでの分割Bnから時刻n+1における分割Bn+1が次のように定まる。 1. * Bnがm個の部分からなるとき、各部分の大きさを|bi , i=1,...,mとするなら、
rdfs:label Proceso estocástico del restaurante chino (es) Chinese restaurant process (en) 中華料理店過程 (ja) 中餐馆过程 (zh)
owl:sameAs freebase:Chinese restaurant process yago-res:Chinese restaurant process wikidata:Chinese restaurant process dbpedia-es:Chinese restaurant process dbpedia-fa:Chinese restaurant process dbpedia-ja:Chinese restaurant process dbpedia-zh:Chinese restaurant process https://global.dbpedia.org/id/45UWN
prov:wasDerivedFrom wikipedia-en:Chinese_restaurant_process?oldid=1111143350&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Chinese_restaurant_process
is dbo:wikiPageDisambiguates of dbr:Chinese_restaurant_(disambiguation) dbr:CRP
is dbo:wikiPageRedirects of dbr:Chinese_Restaurant_Process dbr:Chinese_restaurant_table_distribution
is dbo:wikiPageWikiLink of dbr:Pólya_urn_model dbr:Indian_buffet_process dbr:List_of_partition_topics dbr:List_of_probability_topics dbr:Preferential_attachment dbr:Pitman–Yor_process dbr:The_rich_get_richer_and_the_poor_get_poorer dbr:Chinese_Restaurant_Process dbr:Chinese_restaurant_(disambiguation) dbr:Chinese_restaurant_table_distribution dbr:K._J._Ray_Liu dbr:Latent_Dirichlet_allocation dbr:Latent_and_observable_variables dbr:Barabási–Albert_model dbr:Dirichlet-multinomial_distribution dbr:Dirichlet_process dbr:Catalog_of_articles_in_probability_theory dbr:CRP dbr:Markov_chain_Monte_Carlo dbr:List_of_statistics_articles dbr:List_of_stochastic_processes_topics dbr:Ewens's_sampling_formula dbr:Table_sharing
is foaf:primaryTopic of wikipedia-en:Chinese_restaurant_process