Deductive closure (original) (raw)
In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies . If is a set of formulae, the deductive closure of is its smallest superset that is deductively closed. The deductive closure of a theory is often denoted or . This is a special case of the more general mathematical concept of closure — in particular, the deductive closure of is exactly the closure of with respect to the operation of logical consequence.
Property | Value |
---|---|
dbo:abstract | In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies . If is a set of formulae, the deductive closure of is its smallest superset that is deductively closed. The deductive closure of a theory is often denoted or . This is a special case of the more general mathematical concept of closure — in particular, the deductive closure of is exactly the closure of with respect to the operation of logical consequence. (en) In de logica is de deductieve afsluiting van een verzameling proposities en een verzameling afleidingsregels de verzameling proposities zodanig dat deze elke propositie bevat die afleidbaar is uit met regels in . Formeel beschouwd is de deductieve afsluiting een afsluiting waarbij een verzameling proposities gesloten is onder afleidingsregels in . Binnen de kennistheorie wordt gediscussieerd of bepaalde deelverzamelingen van kennis, die bijvoorbeeld betrekking hebben op kennis of geloof over een bepaald onderwerp, afgesloten zijn onder deductie. (nl) In matematica la chiusura deduttiva consiste nell'insieme di deduzioni che possono essere ricavate a partire da un insieme di assiomi. In altre parole, la chiusura deduttiva è l'insieme di tutte le formule che, tramite le regole di inferenza disponibili, sono conseguenza dell'insieme di assiomi considerato. In termini più formali, sia l'insieme di formule considerato, la sua chiusura deduttiva viene indicata con . (it) Fecho dedutivo é uma propriedade de um conjunto de objetos (normalmente sentenças lógicas). Consideramos que um conjunto de objetos B possui fecho dedutivo ou é fechado sob uma determinada operação de consequência C se, para cada subconjunto B' de B, se B' se relaciona com um conjunto de objetos D através de C, então D é subconjunto de B. No contexto de lógica, o fecho lógico de um conjunto de sentenças B é o conjunto de todas as sentenças que podem ser deduzidas a partir de B. (pt) |
dbo:wikiPageID | 7750539 (xsd:integer) |
dbo:wikiPageLength | 1870 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1094902336 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Propositional_calculus dbr:Belief dbr:Deductive_reasoning dbc:Logical_consequence dbr:Mathematical_logic dbr:Epistemology dbr:Theory_of_justification dbc:Propositional_calculus dbr:Closure_(mathematics) dbr:Proposition dbc:Set_theory dbr:Logical_consequence dbr:Well-formed_formula dbc:Deductive_reasoning dbc:Concepts_in_logic dbr:Superset dbr:Theory_(mathematical_logic) dbr:Knowledge |
dbp:wikiPageUsesTemplate | dbt:Citation_needed dbt:Main dbt:Reflist dbt:Short_description dbt:Tmath dbt:Mathlogic-stub |
dct:subject | dbc:Logical_consequence dbc:Propositional_calculus dbc:Set_theory dbc:Deductive_reasoning dbc:Concepts_in_logic |
rdf:type | yago:WikicatConceptsInLogic yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Idea105833840 yago:PsychologicalFeature100023100 |
rdfs:comment | In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies . If is a set of formulae, the deductive closure of is its smallest superset that is deductively closed. The deductive closure of a theory is often denoted or . This is a special case of the more general mathematical concept of closure — in particular, the deductive closure of is exactly the closure of with respect to the operation of logical consequence. (en) In de logica is de deductieve afsluiting van een verzameling proposities en een verzameling afleidingsregels de verzameling proposities zodanig dat deze elke propositie bevat die afleidbaar is uit met regels in . Formeel beschouwd is de deductieve afsluiting een afsluiting waarbij een verzameling proposities gesloten is onder afleidingsregels in . Binnen de kennistheorie wordt gediscussieerd of bepaalde deelverzamelingen van kennis, die bijvoorbeeld betrekking hebben op kennis of geloof over een bepaald onderwerp, afgesloten zijn onder deductie. (nl) In matematica la chiusura deduttiva consiste nell'insieme di deduzioni che possono essere ricavate a partire da un insieme di assiomi. In altre parole, la chiusura deduttiva è l'insieme di tutte le formule che, tramite le regole di inferenza disponibili, sono conseguenza dell'insieme di assiomi considerato. In termini più formali, sia l'insieme di formule considerato, la sua chiusura deduttiva viene indicata con . (it) Fecho dedutivo é uma propriedade de um conjunto de objetos (normalmente sentenças lógicas). Consideramos que um conjunto de objetos B possui fecho dedutivo ou é fechado sob uma determinada operação de consequência C se, para cada subconjunto B' de B, se B' se relaciona com um conjunto de objetos D através de C, então D é subconjunto de B. No contexto de lógica, o fecho lógico de um conjunto de sentenças B é o conjunto de todas as sentenças que podem ser deduzidas a partir de B. (pt) |
rdfs:label | Deductive closure (en) Chiusura deduttiva (it) Deductieve afsluiting (nl) Fecho dedutivo (pt) |
owl:sameAs | freebase:Deductive closure yago-res:Deductive closure wikidata:Deductive closure dbpedia-it:Deductive closure dbpedia-nl:Deductive closure dbpedia-pt:Deductive closure https://global.dbpedia.org/id/4JA3p |
prov:wasDerivedFrom | wikipedia-en:Deductive_closure?oldid=1094902336&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Deductive_closure |
is dbo:notableIdea of | dbr:Robert_Nozick |
is dbo:wikiPageDisambiguates of | dbr:Closure |
is dbo:wikiPageRedirects of | dbr:Deductive_closure_principle dbr:Closure_(logic) |
is dbo:wikiPageWikiLink of | dbr:Belief_revision dbr:Robert_Nozick dbr:Decidability_(logic) dbr:Index_of_epistemology_articles dbr:Index_of_logic_articles dbr:Index_of_philosophy_articles_(D–H) dbr:Interior_algebra dbr:Closure dbr:Transitive_closure dbr:Doxastic_logic dbr:Cyc dbr:Craig's_theorem dbr:Classical_modal_logic dbr:The_Cock_and_the_Jasp dbr:Outline_of_logic dbr:Deductive_closure_principle dbr:Closure_(logic) |
is foaf:primaryTopic of | wikipedia-en:Deductive_closure |