Detecting Earth from distant star-based systems (original) (raw)
رصد عبور الأرض من النجوم ممكن بما أن علماء الفلك يستعملون طرقًا كثيرةً لرصد الكواكب الخارجية من الأرض. قد تستعمل بعض هذه الأساليب نفسها، من الناحية النظرية على الأقل، لاكتشاف الأرض باعتبارها كوكبًا خارجيًا انطلاقًا من النجوم البعيدة. في أكتوبر عام 2020، حدد علماء الفلك مبدئيًا 508 نجم من النجوم ضمن مجال يبعد من الأرض 326 سنة ضوئية أي مايعادل (100 فرسخ فلكي)، تمتاز كونها نقطة مفضلة لدراسة ورصد عبور الأرض واكتشافها على أنها كوكب خارجي بالنسبة للشمس والنجوم.
Property | Value |
---|---|
dbo:abstract | رصد عبور الأرض من النجوم ممكن بما أن علماء الفلك يستعملون طرقًا كثيرةً لرصد الكواكب الخارجية من الأرض. قد تستعمل بعض هذه الأساليب نفسها، من الناحية النظرية على الأقل، لاكتشاف الأرض باعتبارها كوكبًا خارجيًا انطلاقًا من النجوم البعيدة. في أكتوبر عام 2020، حدد علماء الفلك مبدئيًا 508 نجم من النجوم ضمن مجال يبعد من الأرض 326 سنة ضوئية أي مايعادل (100 فرسخ فلكي)، تمتاز كونها نقطة مفضلة لدراسة ورصد عبور الأرض واكتشافها على أنها كوكب خارجي بالنسبة للشمس والنجوم. (ar) There are several methods currently used by astronomers to detect distant exoplanets from Earth. Theoretically, some of these same methods may be used to detect the Earth as an exoplanet from distant star systems. In June 2021, astronomers identified 1,715 stars (with likely related exoplanetary systems) within 326 light-years (100 parsecs) that have a favorable positional vantage point—in relation to the Earth Transit Zone (ETZ)—of detecting Earth as an exoplanet transiting the Sun since the beginnings of human civilization (about 5,000 years ago); an additional 319 stars are expected to arrive at this special vantage point in the next 5,000 years. Seven known exoplanet hosts, including Ross 128, may be among these stars. Teegarden's Star and Trappist-1 may be expected to see the Earth in 29 and 1,642 years, respectively. Radio waves, emitted by humans, have reached over 75 of the closest stars that were studied. In June 2021, astronomers reported identifying 29 planets in habitable zones that may be capable of observing the Earth. Earlier, in October 2020, astronomers had initially identified 508 such stars within 326 light-years (100 parsecs) that would have a favorable positional vantage point—in relation to the Earth Transit Zone (ETZ)—of detecting Earth as an exoplanet transiting the Sun. Transit method is the most popular tool used to detect exoplanets and the most common tool to spectroscopically analyze exoplanetary atmospheres. As a result, such studies, based on the transit method, will be useful in the search for life on exoplanets beyond our Solar System by the SETI program, Breakthrough Listen Initiative, as well as upcoming exoplanetary TESS mission searches. Detectability of Earth from distant star-based systems may allow for the detectability of humanity and/or analysis of Earth from distant vantage points such as via "atmospheric SETI" for the detection of atmospheric compositions explainable only by use of (artificial) technology like nitrogen dioxide air pollution from e.g. transportation technologies. The easiest or most likely artificial signals from Earth to be detectable are brief pulses transmitted by anti-ballistic missile (ABM) early-warning and space-surveillance radars during the Cold War and later astronomical and military radars. Unlike the earliest and conventional radio- and television-broadcasting which has been claimed to be undetectable at short distances, such signals could be detected from very distant, possibly star-based, receiver stations – any single of which would detect brief episodes of powerful pulses repeating with intervals of one Earth day – and could be used to detect both Earth as well as the presence of a radar-utilizing civilization on it. Studies have suggested that radio broadcast leakage – with the program material likely not being detectable – may be a technosignature detectable at distances of up to a hundred light years with technology equivalent to the Square Kilometer Array if the location of Earth is known. Likewise, if Earth's location can be and is known, it may be possible to use atmospheric analysis to detect life or favorable conditions for it on Earth via biosignatures, including MERMOZ instruments that may be capable of remotely detecting living matter on Earth. (en) |
dbo:thumbnail | wiki-commons:Special:FilePath/Dopspec-inline.gif?width=300 |
dbo:wikiPageExternalLink | http://exoplanet.eu/ |
dbo:wikiPageID | 65667384 (xsd:integer) |
dbo:wikiPageLength | 12712 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1087734246 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Ross_128 dbr:List_of_exoplanet_search_projects dbr:MERMOZ dbr:Paris_Observatory dbr:Search_for_extraterrestrial_intelligence dbr:Cold_War dbr:Anti-ballistic_missile dbr:Light-year dbr:Planetary_system dbr:Transit_(astronomy) dbr:Transiting_Exoplanet_Survey_Satellite dbr:Air_pollution dbr:Earth dbr:Exoplanet dbr:Extraterrestrial_life dbr:Breakthrough_Listen dbr:Nitrogen_dioxide dbr:Parsec dbr:Habitable_zone dbr:Astronomical_spectroscopy dbc:Exoplanetology dbr:Teegarden's_Star dbc:Astrobiology dbc:Planetary_science dbr:Biosignature dbr:Sun dbr:Solar_System dbr:Extraterrestrial_atmosphere dbr:Lists_of_exoplanets dbr:Technosignature dbr:Trappist-1 dbr:Square_Kilometer_Array dbr:File:Dopspec-inline.gif |
dbp:wikiPageUsesTemplate | dbt:Annotated_link dbt:Div_col dbt:Div_col_end dbt:Portal_bar dbt:Reflist dbt:Short_description dbt:Use_dmy_dates dbt:Astrobiology dbt:Exoplanet_search_projects dbt:Exoplanet |
dct:subject | dbc:Exoplanetology dbc:Astrobiology dbc:Planetary_science |
rdfs:comment | رصد عبور الأرض من النجوم ممكن بما أن علماء الفلك يستعملون طرقًا كثيرةً لرصد الكواكب الخارجية من الأرض. قد تستعمل بعض هذه الأساليب نفسها، من الناحية النظرية على الأقل، لاكتشاف الأرض باعتبارها كوكبًا خارجيًا انطلاقًا من النجوم البعيدة. في أكتوبر عام 2020، حدد علماء الفلك مبدئيًا 508 نجم من النجوم ضمن مجال يبعد من الأرض 326 سنة ضوئية أي مايعادل (100 فرسخ فلكي)، تمتاز كونها نقطة مفضلة لدراسة ورصد عبور الأرض واكتشافها على أنها كوكب خارجي بالنسبة للشمس والنجوم. (ar) There are several methods currently used by astronomers to detect distant exoplanets from Earth. Theoretically, some of these same methods may be used to detect the Earth as an exoplanet from distant star systems. Transit method is the most popular tool used to detect exoplanets and the most common tool to spectroscopically analyze exoplanetary atmospheres. As a result, such studies, based on the transit method, will be useful in the search for life on exoplanets beyond our Solar System by the SETI program, Breakthrough Listen Initiative, as well as upcoming exoplanetary TESS mission searches. (en) |
rdfs:label | رصد عبور الأرض من النجوم (ar) Detecting Earth from distant star-based systems (en) |
owl:sameAs | wikidata:Detecting Earth from distant star-based systems dbpedia-ar:Detecting Earth from distant star-based systems https://global.dbpedia.org/id/FMJvz |
prov:wasDerivedFrom | wikipedia-en:Detecting_Earth_from_distant_star-based_systems?oldid=1087734246&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Dopspec-inline.gif |
foaf:isPrimaryTopicOf | wikipedia-en:Detecting_Earth_from_distant_star-based_systems |
is dbo:wikiPageRedirects of | dbr:Detecting_Earth_from_distant_stars dbr:Earth_Transit_Zone dbr:Earth_as_transiting_exoplanet dbr:Earth_transiting_Sun dbr:Exoplanet_Earth |
is dbo:wikiPageWikiLink of | dbr:Detecting_Earth_from_distant_stars dbr:April–June_2021_in_science dbr:Early_warning_system dbr:Earth_Transit_Zone dbr:Earth_as_transiting_exoplanet dbr:Earth_transiting_Sun dbr:Exoplanet_Earth |
is foaf:primaryTopic of | wikipedia-en:Detecting_Earth_from_distant_star-based_systems |