dbo:abstract |
In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as for and the parameters are restricted to . Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. (en) 双対ハーン多項式(そうついはーんたこうしき、英語: dual Hahn polynomials)は直交多項式のひとつで、アスキースキームによって体系付けられる。 (ja) 双重哈恩多项式(Dual Hahn polynomials)是一个正交多项式,定义如下 其中0≤n≤N 双重哈恩多项式的前几个: (zh) |
dbo:wikiPageExternalLink |
https://www.hal.inserm.fr/inserm-00189813/file/Image_analysis_Hahn.pdf |
dbo:wikiPageID |
32670696 (xsd:integer) |
dbo:wikiPageLength |
3938 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1114658536 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Generalized_hypergeometric_function dbr:Hahn_polynomials dbr:Numerical_stability dbr:Mathematische_Nachrichten dbr:Dual_q-Hahn_polynomials dbr:Falling_and_rising_factorials dbc:Orthogonal_polynomials dbc:Special_hypergeometric_functions dbr:Chebyshev_polynomials dbr:Askey_scheme dbr:Orthogonal_polynomials dbr:Racah_polynomials dbr:Springer-Verlag |
dbp:doi |
10.100700 (xsd:double) |
dbp:first |
Peter A. (en) René F. (en) Roderick S. C. (en) Roelof (en) Tom H. (en) |
dbp:id |
18.190000 (xsd:double) |
dbp:isbn |
978 (xsd:integer) |
dbp:last |
Wong (en) Koekoek (en) Koornwinder (en) Lesky (en) Swarttouw (en) |
dbp:loc |
14 (xsd:integer) |
dbp:location |
Berlin, New York (en) |
dbp:mr |
2656096 (xsd:integer) |
dbp:publisher |
dbr:Springer-Verlag |
dbp:series |
Springer Monographs in Mathematics (en) |
dbp:title |
Hypergeometric orthogonal polynomials and their q-analogues (en) Hahn Class: Definitions (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harvs dbt:Dlmf |
dbp:year |
2010 (xsd:integer) |
dct:subject |
dbc:Orthogonal_polynomials dbc:Special_hypergeometric_functions |
rdf:type |
yago:WikicatOrthogonalPolynomials yago:WikicatSpecialHypergeometricFunctions yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Polynomial105861855 yago:Relation100031921 |
rdfs:comment |
In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as for and the parameters are restricted to . Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. (en) 双対ハーン多項式(そうついはーんたこうしき、英語: dual Hahn polynomials)は直交多項式のひとつで、アスキースキームによって体系付けられる。 (ja) 双重哈恩多项式(Dual Hahn polynomials)是一个正交多项式,定义如下 其中0≤n≤N 双重哈恩多项式的前几个: (zh) |
rdfs:label |
Dual Hahn polynomials (en) 双対ハーン多項式 (ja) 双哈恩多项式 (zh) |
owl:sameAs |
freebase:Dual Hahn polynomials yago-res:Dual Hahn polynomials wikidata:Dual Hahn polynomials dbpedia-ja:Dual Hahn polynomials dbpedia-zh:Dual Hahn polynomials https://global.dbpedia.org/id/4j3yR |
prov:wasDerivedFrom |
wikipedia-en:Dual_Hahn_polynomials?oldid=1114658536&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Dual_Hahn_polynomials |
is dbo:wikiPageWikiLink of |
dbr:Continuous_Hahn_polynomials dbr:Continuous_dual_Hahn_polynomials dbr:Hahn_polynomials dbr:Discrete_orthogonal_polynomials dbr:Askey_scheme dbr:Orthogonal_polynomials |
is foaf:primaryTopic of |
wikipedia-en:Dual_Hahn_polynomials |