Dual Hahn polynomials (original) (raw)

Property Value
dbo:abstract In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as for and the parameters are restricted to . Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. (en) 双対ハーン多項式(そうついはーんたこうしき、英語: dual Hahn polynomials)は直交多項式のひとつで、アスキースキームによって体系付けられる。 (ja) 双重哈恩多项式(Dual Hahn polynomials)是一个正交多项式,定义如下 其中0≤n≤N 双重哈恩多项式的前几个: (zh)
dbo:wikiPageExternalLink https://www.hal.inserm.fr/inserm-00189813/file/Image_analysis_Hahn.pdf
dbo:wikiPageID 32670696 (xsd:integer)
dbo:wikiPageLength 3938 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1114658536 (xsd:integer)
dbo:wikiPageWikiLink dbr:Generalized_hypergeometric_function dbr:Hahn_polynomials dbr:Numerical_stability dbr:Mathematische_Nachrichten dbr:Dual_q-Hahn_polynomials dbr:Falling_and_rising_factorials dbc:Orthogonal_polynomials dbc:Special_hypergeometric_functions dbr:Chebyshev_polynomials dbr:Askey_scheme dbr:Orthogonal_polynomials dbr:Racah_polynomials dbr:Springer-Verlag
dbp:doi 10.100700 (xsd:double)
dbp:first Peter A. (en) René F. (en) Roderick S. C. (en) Roelof (en) Tom H. (en)
dbp:id 18.190000 (xsd:double)
dbp:isbn 978 (xsd:integer)
dbp:last Wong (en) Koekoek (en) Koornwinder (en) Lesky (en) Swarttouw (en)
dbp:loc 14 (xsd:integer)
dbp:location Berlin, New York (en)
dbp:mr 2656096 (xsd:integer)
dbp:publisher dbr:Springer-Verlag
dbp:series Springer Monographs in Mathematics (en)
dbp:title Hypergeometric orthogonal polynomials and their q-analogues (en) Hahn Class: Definitions (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harvs dbt:Dlmf
dbp:year 2010 (xsd:integer)
dct:subject dbc:Orthogonal_polynomials dbc:Special_hypergeometric_functions
rdf:type yago:WikicatOrthogonalPolynomials yago:WikicatSpecialHypergeometricFunctions yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Polynomial105861855 yago:Relation100031921
rdfs:comment In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as for and the parameters are restricted to . Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. (en) 双対ハーン多項式(そうついはーんたこうしき、英語: dual Hahn polynomials)は直交多項式のひとつで、アスキースキームによって体系付けられる。 (ja) 双重哈恩多项式(Dual Hahn polynomials)是一个正交多项式,定义如下 其中0≤n≤N 双重哈恩多项式的前几个: (zh)
rdfs:label Dual Hahn polynomials (en) 双対ハーン多項式 (ja) 双哈恩多项式 (zh)
owl:sameAs freebase:Dual Hahn polynomials yago-res:Dual Hahn polynomials wikidata:Dual Hahn polynomials dbpedia-ja:Dual Hahn polynomials dbpedia-zh:Dual Hahn polynomials https://global.dbpedia.org/id/4j3yR
prov:wasDerivedFrom wikipedia-en:Dual_Hahn_polynomials?oldid=1114658536&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Dual_Hahn_polynomials
is dbo:wikiPageWikiLink of dbr:Continuous_Hahn_polynomials dbr:Continuous_dual_Hahn_polynomials dbr:Hahn_polynomials dbr:Discrete_orthogonal_polynomials dbr:Askey_scheme dbr:Orthogonal_polynomials
is foaf:primaryTopic of wikipedia-en:Dual_Hahn_polynomials