Elitzur's theorem (original) (raw)
In quantum field theory and statistical field theory, Elitzur's theorem states that in gauge theories, the only operators that can have non-vanishing expectation values are ones that are invariant under local gauge transformations. An important implication is that gauge symmetry cannot be spontaneously broken. The theorem was proved in 1975 by Shmuel Elitzur in lattice field theory, although the same result is expected to hold in the continuum. The theorem shows that the naive interpretation of the Higgs mechanism as the spontaneous symmetry breaking of a gauge symmetry is incorrect, although the phenomenon can be reformulated entirely in terms of gauge invariant quantities in what is known as the Fröhlich–Morchio–Strocchi mechanism.
Property | Value |
---|---|
dbo:abstract | In quantum field theory and statistical field theory, Elitzur's theorem states that in gauge theories, the only operators that can have non-vanishing expectation values are ones that are invariant under local gauge transformations. An important implication is that gauge symmetry cannot be spontaneously broken. The theorem was proved in 1975 by Shmuel Elitzur in lattice field theory, although the same result is expected to hold in the continuum. The theorem shows that the naive interpretation of the Higgs mechanism as the spontaneous symmetry breaking of a gauge symmetry is incorrect, although the phenomenon can be reformulated entirely in terms of gauge invariant quantities in what is known as the Fröhlich–Morchio–Strocchi mechanism. (en) Теоре́ма Елітцу́ра — є теоремою квантової та статистичної теорії поля, яка стверджує, що локальні калібрувальні симетрії неможливо спонтанно порушити. Теорема була запропонована в 1975 році Шмуелем Еліцуром, який довів її для абелевих калібрувальних полів на гратці. Тим не менш, можливо спонтанно порушити глобальну симетрію в рамках теорії, яка має локальну калібрувальну симетрію, як у механізмі Хіггса. (uk) |
dbo:wikiPageExternalLink | http://www.itp3.uni-stuttgart.de/lehre/Archiv/Courses_upto_ss13/Lattice_gauge_theory_SS_2009/Chapter3.pdf |
dbo:wikiPageID | 31583410 (xsd:integer) |
dbo:wikiPageLength | 11510 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1120358552 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Quantum_field_theory dbr:Quantum_vacuum_state dbr:Hyperplanes dbr:'t_Hooft_loop dbc:Gauge_theories dbr:Gauge_theory dbr:Noether's_second_theorem dbr:Yang–Mills_theory dbr:Equations_of_motion dbr:Gauge_fixing dbr:Condensed_matter_physics dbr:Underdetermined_system dbc:Statistical_mechanics_theorems dbr:Color_confinement dbr:Compact_group dbr:Subgroup dbc:Theorems_in_quantum_mechanics dbr:Well-posed dbr:Haar_measure dbr:Landau_theory dbr:Large_gauge_transformation dbr:Lattice_field_theory dbr:Action_(physics) dbc:Symmetry dbr:Euler–Lagrange_equation dbr:Expectation_value_(quantum_mechanics) dbc:Lattice_field_theory dbr:Statistical_field_theory dbr:Potential dbr:Ground_state dbr:Symmetry_(physics) dbr:Higgs_mechanism dbr:Phase_transition dbr:Wilson_loop dbr:Unitarity_gauge dbr:Special_unitary_group dbr:Spontaneous_symmetry_breaking dbr:Mermin–Wagner_theorem dbr:Principle_of_locality dbr:Observable dbr:Vacuum_expectation_value dbr:Scaling_limit dbr:Polyakov_loop dbr:Thermodynamic_limit |
dbp:wikiPageUsesTemplate | dbt:Reflist dbt:Short_description |
dct:subject | dbc:Gauge_theories dbc:Statistical_mechanics_theorems dbc:Theorems_in_quantum_mechanics dbc:Symmetry dbc:Lattice_field_theory |
gold:hypernym | dbr:Theorem |
rdf:type | yago:WikicatTheoremsInQuantumPhysics yago:WikicatStatisticalMechanicsTheorems yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In quantum field theory and statistical field theory, Elitzur's theorem states that in gauge theories, the only operators that can have non-vanishing expectation values are ones that are invariant under local gauge transformations. An important implication is that gauge symmetry cannot be spontaneously broken. The theorem was proved in 1975 by Shmuel Elitzur in lattice field theory, although the same result is expected to hold in the continuum. The theorem shows that the naive interpretation of the Higgs mechanism as the spontaneous symmetry breaking of a gauge symmetry is incorrect, although the phenomenon can be reformulated entirely in terms of gauge invariant quantities in what is known as the Fröhlich–Morchio–Strocchi mechanism. (en) Теоре́ма Елітцу́ра — є теоремою квантової та статистичної теорії поля, яка стверджує, що локальні калібрувальні симетрії неможливо спонтанно порушити. Теорема була запропонована в 1975 році Шмуелем Еліцуром, який довів її для абелевих калібрувальних полів на гратці. Тим не менш, можливо спонтанно порушити глобальну симетрію в рамках теорії, яка має локальну калібрувальну симетрію, як у механізмі Хіггса. (uk) |
rdfs:label | Elitzur's theorem (en) Теорема Елітцура (uk) |
owl:sameAs | freebase:Elitzur's theorem yago-res:Elitzur's theorem wikidata:Elitzur's theorem dbpedia-uk:Elitzur's theorem https://global.dbpedia.org/id/4k1fP |
prov:wasDerivedFrom | wikipedia-en:Elitzur's_theorem?oldid=1120358552&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Elitzur's_theorem |
is dbo:wikiPageWikiLink of | dbr:Higgs_mechanism dbr:Wilson_loop dbr:Spontaneous_symmetry_breaking dbr:List_of_theorems dbr:Polyakov_loop |
is foaf:primaryTopic of | wikipedia-en:Elitzur's_theorem |