Elliptic complex (original) (raw)

Property Value
dbo:abstract In mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem. (en) 편미분 방정식 이론과 미분기하학에서 타원 복합체(楕圓複合體, elliptic complex)란 프레드홀름 작용소로 이루어진 사슬 복합체다. 드람 복합체와 돌보 복합체를 일반화한 것이다. (ko) 数学の、特に偏微分方程式や微分幾何学における楕円型複体(だえんがたふくたい、英: elliptic complex)とは、楕円型作用素の概念を列に一般化したものである。楕円型複体は、ホッジ理論を展開する上で本質的となるド・ラーム複体とドルボー複体に共通の特徴を取り出したものである。アティヤ=シンガーの指数定理とアティヤ=ボットの不動点定理の関連でも現れる。 (ja)
dbo:wikiPageExternalLink https://www.jstor.org/stable/1970715%7Cjournal=The
dbo:wikiPageID 3189496 (xsd:integer)
dbo:wikiPageLength 2012 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1067026182 (xsd:integer)
dbo:wikiPageWikiLink dbr:De_Rham_cohomology dbr:Atiyah-Singer_index_theorem dbc:Differential_geometry dbr:Mathematics dbr:Elliptic_operator dbr:Pullback_bundle dbc:Elliptic_partial_differential_equations dbr:Dolbeault_cohomology dbr:Partial_differential_equation dbr:Cotangent_bundle dbr:Hodge_theory dbr:Differential_geometry dbr:Chain_complex dbr:Sheaf_(mathematics) dbr:Smooth_manifold dbr:Differential_operators dbr:Symbol_of_a_differential_operator dbr:Exact_sequence dbr:Atiyah-Bott_fixed_point_theorem dbr:Vector_bundles
dbp:wikiPageUsesTemplate dbt:Cite_journal dbt:Differential-geometry-stub
dct:subject dbc:Differential_geometry dbc:Elliptic_partial_differential_equations
rdf:type yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:MathematicalStatement106732169 yago:Message106598915 yago:PartialDifferentialEquation106670866 yago:Statement106722453 yago:WikicatEllipticPartialDifferentialEquations
rdfs:comment In mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem. (en) 편미분 방정식 이론과 미분기하학에서 타원 복합체(楕圓複合體, elliptic complex)란 프레드홀름 작용소로 이루어진 사슬 복합체다. 드람 복합체와 돌보 복합체를 일반화한 것이다. (ko) 数学の、特に偏微分方程式や微分幾何学における楕円型複体(だえんがたふくたい、英: elliptic complex)とは、楕円型作用素の概念を列に一般化したものである。楕円型複体は、ホッジ理論を展開する上で本質的となるド・ラーム複体とドルボー複体に共通の特徴を取り出したものである。アティヤ=シンガーの指数定理とアティヤ=ボットの不動点定理の関連でも現れる。 (ja)
rdfs:label Elliptic complex (en) 楕円型複体 (ja) 타원 복합체 (ko)
owl:sameAs freebase:Elliptic complex yago-res:Elliptic complex wikidata:Elliptic complex dbpedia-ja:Elliptic complex dbpedia-ko:Elliptic complex https://global.dbpedia.org/id/4jQjG
prov:wasDerivedFrom wikipedia-en:Elliptic_complex?oldid=1067026182&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Elliptic_complex
is dbo:wikiPageWikiLink of dbr:List_of_differential_geometry_topics dbr:Elliptic_operator dbr:Perfect_complex dbr:Atiyah–Bott_fixed-point_theorem dbr:Atiyah–Singer_index_theorem dbr:Hodge_theory dbr:Michael_Atiyah
is foaf:primaryTopic of wikipedia-en:Elliptic_complex