dbo:abstract |
Fairness in machine learning refers to the various attempts at correcting algorithmic bias in automated decision processes based on machine learning models. Decisions made by computers after a machine-learning process may be considered unfair if they were based on variables considered sensitive. Examples of these kinds of variable include gender, ethnicity, sexual orientation, disability and more. As it is the case with many ethical concepts, definitions of fairness and bias are always controversial. In general, fairness and bias are considered relevant when the decision process impacts people's lives. In machine learning, the problem of algorithmic bias is well known and well studied. Outcomes may be skewed by a range of factors and thus might be considered unfair with respect to certain groups or individuals. An example would be the way social media sites deliver personalized news to consumers. (en) En aprendizaje automático, un algoritmo es justo, o tiene equidad si sus resultados son independientes de un cierto conjunto de variables que consideramos sensibles y no relacionadas con él (p.e.: género, etnia, orientación sexual, etc.). (es) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Binary_confusion_matrix.jpg?width=300 |
dbo:wikiPageID |
62683332 (xsd:integer) |
dbo:wikiPageLength |
47905 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1121154884 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Beauty.AI dbr:ProPublica dbr:Probability_distribution dbr:Programmer dbr:Python_(programming_language) dbr:Multinomial_distribution dbr:Trade_off dbr:Binary_numeral_system dbr:Algorithm dbr:Algorithmic_bias dbc:Information_ethics dbr:Joint_probability_distribution dbr:Bias dbr:Relaxation_(approximation) dbr:United_States_Attorney_General dbr:Dependent_and_independent_variables dbr:Mathematical_optimization dbr:Gender dbr:Entropy_(information_theory) dbr:GitHub dbr:Google dbr:Google_Photos dbr:Gradient dbr:Gradient_descent dbr:Mutual_information dbr:Confusion_matrix dbr:Critical_value dbr:Equalized_odds dbr:Lipschitz_continuity dbr:Machine_Learning dbr:Machine_learning dbr:Sign_(mathematics) dbc:Machine_learning dbr:Causal_model dbc:Computing_and_society dbr:Data_set dbr:Social_welfare_function dbr:Eric_Holder dbr:Facebook dbr:Flickr dbr:Source_code dbr:Ethnicity dbr:Probability dbr:Probability_theory dbr:Random_variable dbr:Hyperparameter_optimization dbr:Artificial_intelligence dbr:Artificial_neural_network dbc:Philosophy_of_artificial_intelligence dbr:Accuracy_and_precision dbc:Bias dbc:Discrimination dbr:Weight_function dbr:Disability dbr:Discrimination dbr:Divergence_(statistics) dbr:COMPAS_(software) dbr:Softmax_function dbr:Data_preprocessing dbr:Dataset dbr:IBM dbr:Independence_(probability_theory) dbr:Random_variables dbr:Recidivism dbr:Sendhil_Mullainathan dbr:Sexual_orientation dbr:Loss_function dbr:Sensitivity_and_specificity dbr:Slack_variable dbr:Statistical_classification dbr:Subset dbr:Joint_distribution dbr:K-S_test dbr:Pretrial_detention dbr:File:AdvFig2.jpg dbr:File:Binary_confusion_matrix.jpg dbr:File:RelationsEng.jpg |
dbp:wikiPageUsesTemplate |
dbt:Expand_section dbt:Main_articles dbt:Multiple_issues dbt:Short_description dbt:Technical dbt:Manual |
dcterms:subject |
dbc:Information_ethics dbc:Machine_learning dbc:Computing_and_society dbc:Philosophy_of_artificial_intelligence dbc:Bias dbc:Discrimination |
rdfs:comment |
En aprendizaje automático, un algoritmo es justo, o tiene equidad si sus resultados son independientes de un cierto conjunto de variables que consideramos sensibles y no relacionadas con él (p.e.: género, etnia, orientación sexual, etc.). (es) Fairness in machine learning refers to the various attempts at correcting algorithmic bias in automated decision processes based on machine learning models. Decisions made by computers after a machine-learning process may be considered unfair if they were based on variables considered sensitive. Examples of these kinds of variable include gender, ethnicity, sexual orientation, disability and more. As it is the case with many ethical concepts, definitions of fairness and bias are always controversial. In general, fairness and bias are considered relevant when the decision process impacts people's lives. In machine learning, the problem of algorithmic bias is well known and well studied. Outcomes may be skewed by a range of factors and thus might be considered unfair with respect to certain (en) |
rdfs:label |
Fairness (machine learning) (en) Equidad (aprendizaje automático) (es) |
owl:sameAs |
wikidata:Fairness (machine learning) dbpedia-es:Fairness (machine learning) dbpedia-fa:Fairness (machine learning) https://global.dbpedia.org/id/B6zvv |
prov:wasDerivedFrom |
wikipedia-en:Fairness_(machine_learning)?oldid=1121154884&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/AdvFig2.jpg wiki-commons:Special:FilePath/Binary_confusion_matrix.jpg wiki-commons:Special:FilePath/RelationsEng.jpg |
foaf:isPrimaryTopicOf |
wikipedia-en:Fairness_(machine_learning) |
is dbo:knownFor of |
dbr:Deborah_Raji dbr:Timnit_Gebru dbr:Hanna_Wallach dbr:Margaret_Mitchell_(scientist) |
is dbo:wikiPageDisambiguates of |
dbr:Fairness |
is dbo:wikiPageRedirects of |
dbr:Fairness_in_artificial_intelligence dbr:Fairness_in_machine_learning dbr:Algorithmic_fairness |
is dbo:wikiPageWikiLink of |
dbr:ML_Fairness dbr:Algorithmic_Justice_League dbr:Algorithmic_bias dbr:Deborah_Raji dbr:Equalized_odds dbr:ML.NET dbr:Machine_learning dbr:Kristina_Lerman dbr:Machine_ethics dbr:Timnit_Gebru dbr:Fairness dbr:Link_prediction dbr:ACM_Conference_on_Fairness,_Accountability,_and_Transparency dbr:AI_alignment dbr:Fairness_in_artificial_intelligence dbr:Hanna_Wallach dbr:Himabindu_Lakkaraju dbr:Sorelle_Friedler dbr:Fairness_in_machine_learning dbr:Margaret_Mitchell_(scientist) dbr:Algorithmic_fairness |
is dbp:knownFor of |
dbr:Hanna_Wallach |
is foaf:primaryTopic of |
wikipedia-en:Fairness_(machine_learning) |