Independent Chip Model (original) (raw)

About DBpedia

Ein Deal stellt beim Poker die Möglichkeit dar, das Preisgeld eines Pokerturniers unabhängig vom späteren Spielverlauf unter den verbliebenen Spielern zu verteilen.

thumbnail

Property Value
dbo:abstract Ein Deal stellt beim Poker die Möglichkeit dar, das Preisgeld eines Pokerturniers unabhängig vom späteren Spielverlauf unter den verbliebenen Spielern zu verteilen. (de) In poker, the Independent Chip Model (ICM) is a mathematical model used to approximately calculate a player's overall equity in a tournament. The model uses stack sizes alone to determine how often a player will finish in each position (1st, 2nd, etc.). A player's probability of finishing in each position is then multiplied by the prize amount for that position and those numbers are added together to determine the player's overall equity. The ICM is also known as the Malmuth–Harville method. In 1973 David Harville published a method to calculate the probability for a horse to finish 1st, 2nd, etc. in a horse race. In 1987 Mason Malmuth, independent of Harville, used this method to calculate the probability for a tournament player to finish 1st, 2nd, etc. The term ICM is often misunderstood to mean a simulator that helps a player make decisions in a tournament. Such simulators often make use of the Independent Chip Model but are not strictly speaking ICM calculators. A true ICM calculator will have the chip counts of all players, as well as the payout structure of the tournament, as input and each player's equity as output. The ICM can be applied to answer specific questions, such as: * The range of hands that a player can move all in with, considering the action so far and the stack sizes of the other players still in the hand * The range of hands that a player can call another player's all in with, and recommends either calling or moving all in over the top, considering all the stacks still in the hand * When discussing a deal, how much money each player should get The calculation using the ICM can be elaborated as below: 1. * Every player's chance of finishing 1st is proportional to its chip count 2. * If player i did not finish 1st, given player k finished 1st, player i chance of finishing 2nd is P(Xi,2|Xk,1) = xi/(1-xk) 3. * Following this logic, given m1 finish 1st, m2 finished 2nd, mj-1 finish j-1th, the chance of player i finish jth place is P(Xi,j
dbo:thumbnail wiki-commons:Special:FilePath/3PlayersIcmFem.png?width=300
dbo:wikiPageExternalLink https://books.google.com/books%3Fid=nr7Tya9wW04C&pg=PA17%7Cdate=15 https://books.google.com/books%3Fid=xMcd40uxy3MC&pg=PA122%7Cdate=July
dbo:wikiPageID 26118954 (xsd:integer)
dbo:wikiPageLength 15090 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111033066 (xsd:integer)
dbo:wikiPageWikiLink dbr:Polygon_mesh dbr:All_in_(poker) dbr:Simplex dbr:Simulator dbr:Poker_strategy dbr:Dirichlet_problem dbr:Probability dbc:Poker_gameplay_and_terminology dbr:Poker dbr:Kirchhoff's_circuit_laws dbr:Map_(mathematics) dbr:Finite_element_method dbr:File:3PlayersIcmFem.png
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Reflist dbt:Use_dmy_dates dbt:Poker_tools
dct:subject dbc:Poker_gameplay_and_terminology
gold:hypernym dbr:Model
rdf:type dbo:Person
rdfs:comment Ein Deal stellt beim Poker die Möglichkeit dar, das Preisgeld eines Pokerturniers unabhängig vom späteren Spielverlauf unter den verbliebenen Spielern zu verteilen. (de) Au poker, l'Independent Chip Model (ICM) est un modèle mathématique utilisé pour calculer approximativement l'équité (c'est-à-dire l'espérance) globale d'un joueur dans un tournoi. Le modèle utilise uniquement les profondeurs de tapis (c'est-à-dire le nombre de jetons détenus par chaque joueur) pour déterminer la fréquence à laquelle un joueur finira à chaque position d'un tournoi (qu'il soit à une seule table, alors dit sit-n-go, ou multi-tables, alors appelé MTT). La probabilité qu'un joueur termine à chaque position est ensuite multipliée par le montant du prix pour cette position et ces nombres sont additionnés pour déterminer l'équité globale du joueur. (fr) In poker, the Independent Chip Model (ICM) is a mathematical model used to approximately calculate a player's overall equity in a tournament. The model uses stack sizes alone to determine how often a player will finish in each position (1st, 2nd, etc.). A player's probability of finishing in each position is then multiplied by the prize amount for that position and those numbers are added together to determine the player's overall equity. The ICM can be applied to answer specific questions, such as: The calculation using the ICM can be elaborated as below: For example: ICM precision 2-players case (en)
rdfs:label Deal (Poker) (de) Independent Chip Model (fr) Independent Chip Model (en)
owl:sameAs freebase:Independent Chip Model wikidata:Independent Chip Model dbpedia-de:Independent Chip Model dbpedia-fr:Independent Chip Model https://global.dbpedia.org/id/fZAN
prov:wasDerivedFrom wikipedia-en:Independent_Chip_Model?oldid=1111033066&ns=0
foaf:depiction wiki-commons:Special:FilePath/3PlayersIcmFem.png
foaf:isPrimaryTopicOf wikipedia-en:Independent_Chip_Model
is dbo:wikiPageDisambiguates of dbr:ICM
is dbo:wikiPageWikiLink of dbr:Index_of_poker_articles dbr:ICM dbr:SitNGo_Wizard
is foaf:primaryTopic of wikipedia-en:Independent_Chip_Model