dbo:abstract |
Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics. In many situations of interest to electrical engineering, it is not necessary to apply quantum theory to get correct results. Classical physics is still an accurate approximation in most situations involving macroscopic objects. With few exceptions, quantum theory is only necessary at the atomic scale and a simpler classical treatment can be applied. Further simplifications of treatment are possible in limited situations. Electrostatics deals only with stationary electric charges so magnetic fields do not arise and are not considered. Permanent magnets can be described without reference to electricity or electromagnetism. Circuit theory deals with electrical networks where the fields are largely confined around current carrying conductors. In such circuits, even Maxwell's equations can be dispensed with and simpler formulations used. On the other hand, a quantum treatment of electromagnetism is important in chemistry. Chemical reactions and chemical bonding are the result of quantum mechanical interactions of electrons around atoms. Quantum considerations are also necessary to explain the behaviour of many electronic devices, for instance the tunnel diode. (en) |
dbo:thumbnail |
wiki-commons:Special:FilePath/CoulombsLaw-2.png?width=300 |
dbo:wikiPageID |
58686423 (xsd:integer) |
dbo:wikiPageLength |
33131 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1114456508 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Capacitor dbr:Quantum_electrodynamics dbr:Quantum_field dbr:Quantum_state dbr:Electric_battery dbr:Electric_charge dbr:Electric_current dbr:Electrical_conductor dbr:Electrical_network dbr:Electromagnet dbr:Electromagnetic_field dbr:Electromagnetic_induction dbr:Electromagnetic_spectrum dbr:Electronic_component dbr:Electrostatics dbr:Energy_level dbr:Permanent_magnet dbr:Right-hand_rule dbr:Vector_field dbr:Voltage dbr:Infrared dbr:Insulator_(electricity) dbr:Electromagnetic_wave dbr:Magnet dbr:Light dbr:Quantum_mechanical dbr:Conservation_of_mass dbr:Coulomb's_law dbr:Coulomb_constant dbr:Maxwell's_equations dbr:Chemical_bond dbr:Chemical_reaction dbr:Ohm's_law dbr:Electric_field dbr:Electric_flux dbr:Electric_power dbr:Electrical_engineering dbr:Electrical_resistance_and_conductance dbr:Electrical_resistivity_and_conductivity dbr:Electricity dbr:Electron dbr:Free_electron_model dbr:Free_space dbr:Gamma_ray dbr:Gauss's_law dbr:Gauss's_law_for_magnetism dbr:Gravity dbr:Conservative_vector_field dbr:Copper dbr:Length_contraction dbr:Lorentz_force dbr:Magnetic_dipole dbr:Magnetic_field dbr:Magnetic_monopole dbr:Silver dbc:Introductory_articles dbr:Fundamental_interaction dbr:Closed_surface dbr:Atomic_scale dbr:Thermal_energy dbr:Transformer dbr:Tunnel_diode dbr:Wave_equation dbr:Weak_interaction dbr:Ion dbr:Rest_frame dbr:Radio_wave dbr:Strong_interaction dbr:Albert_Einstein dbr:Aluminium dbr:Ampère's_circuital_law dbr:Alternating_current dbr:Faraday's_law_of_induction dbr:Frame_of_reference dbr:Diode dbr:Dipole dbr:Direct_current dbr:Flux dbr:Series_and_parallel_circuits dbr:Superconductivity dbr:Pauli_exclusion_principle dbr:Magnetic_flux dbr:Newton's_law_of_universal_gravitation dbr:Radio dbr:Resistor dbr:Hans_Christian_Ørsted dbr:Heinrich_Hertz dbr:Atom dbr:Atomic_nucleus dbr:Inverse-square_law dbr:James_Clerk_Maxwell dbr:Right-hand_grip_rule dbc:Electromagnetism dbr:Charge_conservation dbr:Charge_density dbr:Chemistry dbr:Relative_permittivity dbr:Dielectric dbr:Boson dbr:Photon dbr:Polarizability dbr:Solar_panel dbr:Special_relativity dbr:Speed_of_light dbr:Classical_electromagnetism dbr:Classical_electromagnetism_and_special_relativity dbr:Classical_physics dbr:Fermion dbr:Field_(physics) dbr:Circuit_theory dbr:Maxwell–Faraday_equation dbr:Inductance dbr:Inductor dbr:Kirchhoff's_circuit_laws dbr:Metal dbr:Michael_Faraday dbr:Microwave dbr:Capacitance dbr:X-ray dbr:Macroscopic dbr:Magnetism dbr:Magnitude_(mathematics) dbr:Mains_electricity dbr:Semiconductor dbr:Solenoid dbr:Ultraviolet dbr:Wavelength dbr:List_of_textbooks_in_electromagnetism dbr:Optics dbr:Charge_distribution dbr:File:Diode_symbol.svg dbr:Electromagnetic_waves dbr:Ampere-maxwell_law dbr:Visible_light dbr:Conservation_of_charge dbr:Newton's_law_of_gravity dbr:Permittivity_of_free_space dbr:Lab_frame dbr:File:Parallel_plate_capacitor.svg dbr:File:Battery_symbol.svg dbr:File:Voltage_Source.svg dbr:File:Electrostatic_induction.svg dbr:File:VFPt_charges_plus_minus_thumb.svg dbr:File:EM_Spectrum_Properties_edit.svg dbr:File:Alternative_Current_Symbol.png dbr:File:Capacitor_symbol.svg dbr:File:Conductorenequilibrio.gif dbr:File:CoulombsLaw-2.png dbr:File:Inductor_symbol.svg dbr:File:Resistor_symbol_America.svg |
dbp:caption |
If there is no charge enclosed by a closed surface, then the amount of electric field flowing into it must exactly cancel with the electric field flowing out of it. (en) Because the flow of magnetic field out of a closed surface must cancel with the flow into it, magnets must have both North and South poles which cannot be separated into monopoles. (en) The electron's rest frame (en) The lab frame (en) Kirchoff's junction rule : I1 + I2 + I3 = I4 + I5 Kirchoff's loop rule : V1 + V2 + V3 + V4 = 0 (en) |
dbp:direction |
vertical (en) |
dbp:footer |
The right-hand grip rule for a straight wire and for a coiled wire . Electrical current passed through a wire coiled around an iron core can produce an electromagnet. (en) The force exerted on a positive charge by an electric field and a magnetic field combine to give the Lorentz force. (en) |
dbp:image |
Coil right-hand rule.svg (en) GaussLaw2.svg (en) KVL.png (en) Manoderecha.svg (en) Pierwsze prawo Kirchhoffa.svg (en) Relativistic electromagnetism fig5.svg (en) Relativistic electromagnetism fig6.svg (en) VFPt Earths Magnetic Field Confusion.svg (en) Openstax college-physics 22.17 Lorentz-force-right-hand.jpg (en) Force of an electric field on a positive charge.png (en) |
dbp:totalWidth |
450 (xsd:integer) |
dbp:width |
200 (xsd:integer) 235 (xsd:integer) 245 (xsd:integer) |
dbp:wikiPageUsesTemplate |
dbt:About dbt:Multiple_image dbt:Reflist dbt:Short_description dbt:Introductory_science_articles |
dct:subject |
dbc:Introductory_articles dbc:Electromagnetism |
rdfs:comment |
Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the for (en) |
rdfs:label |
Introduction to electromagnetism (en) |
owl:sameAs |
wikidata:Introduction to electromagnetism dbpedia-da:Introduction to electromagnetism https://global.dbpedia.org/id/9Fsws |
prov:wasDerivedFrom |
wikipedia-en:Introduction_to_electromagnetism?oldid=1114456508&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Parallel_plate_capacitor.svg wiki-commons:Special:FilePath/EM_Spectrum_Properties_edit.svg wiki-commons:Special:FilePath/Battery_symbol.svg wiki-commons:Special:FilePath/Voltage_Source.svg wiki-commons:Special:FilePath/Diode_symbol.svg wiki-commons:Special:FilePath/Resistor_symbol_America.svg wiki-commons:Special:FilePath/VFPt_charges_plus_minus_thumb.svg wiki-commons:Special:FilePath/Manoderecha.svg wiki-commons:Special:FilePath/VFPt_Earths_Magnetic_Field_Confusion.svg wiki-commons:Special:FilePath/Coil_right-hand_rule.svg wiki-commons:Special:FilePath/Electrostatic_induction.svg wiki-commons:Special:FilePath/Alternative_Current_Symbol.png wiki-commons:Special:FilePath/Capacitor_symbol.svg wiki-commons:Special:FilePath/Conductorenequilibrio.gif wiki-commons:Special:FilePath/CoulombsLaw-2.png wiki-commons:Special:FilePath/Force_of_an_electric_field_on_a_positive_charge.png wiki-commons:Special:FilePath/GaussLaw2.svg wiki-commons:Special:FilePath/Inductor_symbol.svg wiki-commons:Special:FilePath/KVL.png wiki-commons:Special:FilePath/Openstax_college-physics_22.17_Lorentz-force-right-hand.jpg wiki-commons:Special:FilePath/Pierwsze_prawo_Kirchhoffa.svg wiki-commons:Special:FilePath/Relativistic_electromagnetism_fig5.svg wiki-commons:Special:FilePath/Relativistic_electromagnetism_fig6.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Introduction_to_electromagnetism |
is dbo:wikiPageRedirects of |
dbr:Introductory_Electromagnetism |
is dbo:wikiPageWikiLink of |
dbr:Electromagnetism dbr:Introduction_to_Electrodynamics dbr:Introductory_Electromagnetism |
is foaf:primaryTopic of |
wikipedia-en:Introduction_to_electromagnetism |