L-semi-inner product (original) (raw)

Property Value
dbo:abstract Das semi-innere Produkt ist ein Begriff aus dem mathematischen Teilgebiet der Funktionalanalysis. Es ist für -Vektorräume definiert, wobei für den Körper der reellen oder komplexen Zahlen steht, und verallgemeinert den Begriff des inneren Produktes. (de) In mathematics, there are two different notions of semi-inner-product. The first, and more common, is that of an inner product which is not required to be strictly positive. This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer, for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis. Fundamental properties were later explored by Giles. (en)
dbo:wikiPageID 32652788 (xsd:integer)
dbo:wikiPageLength 6772 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119698751 (xsd:integer)
dbo:wikiPageWikiLink dbr:Homogeneity dbr:Definite_quadratic_form dbr:Mathematics dbr:Norm_(mathematics) dbr:Functional_analysis dbr:Measure_space dbr:Banach_spaces dbr:Linear_map dbr:Additive_map dbr:Euclidean_space dbr:Number_field dbr:Günter_Lumer dbr:Hilbert_space dbc:Functional_analysis dbr:Inner_product dbr:Normed_vector_space dbr:Linear_vector_space dbr:Cauchy-Schwartz_inequality dbr:Conjugate_homogeneity
dbp:wikiPageUsesTemplate dbt:Annotated_link dbt:Citation_needed dbt:Reflist dbt:Short_description dbt:Functional_analysis dbt:Hilbert_space
dcterms:subject dbc:Functional_analysis
rdfs:comment Das semi-innere Produkt ist ein Begriff aus dem mathematischen Teilgebiet der Funktionalanalysis. Es ist für -Vektorräume definiert, wobei für den Körper der reellen oder komplexen Zahlen steht, und verallgemeinert den Begriff des inneren Produktes. (de) In mathematics, there are two different notions of semi-inner-product. The first, and more common, is that of an inner product which is not required to be strictly positive. This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer, for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis. Fundamental properties were later explored by Giles. (en)
rdfs:label Semi-inneres Produkt (de) L-semi-inner product (en)
owl:sameAs wikidata:L-semi-inner product dbpedia-de:L-semi-inner product https://global.dbpedia.org/id/29F2r
prov:wasDerivedFrom wikipedia-en:L-semi-inner_product?oldid=1119698751&ns=0
foaf:isPrimaryTopicOf wikipedia-en:L-semi-inner_product
is dbo:wikiPageRedirects of dbr:Semi-inner-product dbr:Semi-inner_product dbr:Semi-inner-products dbr:Semi-inner_product_in_the_sense_of_Lumer
is dbo:wikiPageWikiLink of dbr:Banach_space dbr:Günter_Lumer dbr:Semi-inner-product dbr:Semi-inner_product dbr:Semi-inner-products dbr:Semi-inner_product_in_the_sense_of_Lumer
is foaf:primaryTopic of wikipedia-en:L-semi-inner_product