dbo:abstract |
Das semi-innere Produkt ist ein Begriff aus dem mathematischen Teilgebiet der Funktionalanalysis. Es ist für -Vektorräume definiert, wobei für den Körper der reellen oder komplexen Zahlen steht, und verallgemeinert den Begriff des inneren Produktes. (de) In mathematics, there are two different notions of semi-inner-product. The first, and more common, is that of an inner product which is not required to be strictly positive. This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer, for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis. Fundamental properties were later explored by Giles. (en) |
dbo:wikiPageID |
32652788 (xsd:integer) |
dbo:wikiPageLength |
6772 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1119698751 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Homogeneity dbr:Definite_quadratic_form dbr:Mathematics dbr:Norm_(mathematics) dbr:Functional_analysis dbr:Measure_space dbr:Banach_spaces dbr:Linear_map dbr:Additive_map dbr:Euclidean_space dbr:Number_field dbr:Günter_Lumer dbr:Hilbert_space dbc:Functional_analysis dbr:Inner_product dbr:Normed_vector_space dbr:Linear_vector_space dbr:Cauchy-Schwartz_inequality dbr:Conjugate_homogeneity |
dbp:wikiPageUsesTemplate |
dbt:Annotated_link dbt:Citation_needed dbt:Reflist dbt:Short_description dbt:Functional_analysis dbt:Hilbert_space |
dcterms:subject |
dbc:Functional_analysis |
rdfs:comment |
Das semi-innere Produkt ist ein Begriff aus dem mathematischen Teilgebiet der Funktionalanalysis. Es ist für -Vektorräume definiert, wobei für den Körper der reellen oder komplexen Zahlen steht, und verallgemeinert den Begriff des inneren Produktes. (de) In mathematics, there are two different notions of semi-inner-product. The first, and more common, is that of an inner product which is not required to be strictly positive. This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer, for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis. Fundamental properties were later explored by Giles. (en) |
rdfs:label |
Semi-inneres Produkt (de) L-semi-inner product (en) |
owl:sameAs |
wikidata:L-semi-inner product dbpedia-de:L-semi-inner product https://global.dbpedia.org/id/29F2r |
prov:wasDerivedFrom |
wikipedia-en:L-semi-inner_product?oldid=1119698751&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:L-semi-inner_product |
is dbo:wikiPageRedirects of |
dbr:Semi-inner-product dbr:Semi-inner_product dbr:Semi-inner-products dbr:Semi-inner_product_in_the_sense_of_Lumer |
is dbo:wikiPageWikiLink of |
dbr:Banach_space dbr:Günter_Lumer dbr:Semi-inner-product dbr:Semi-inner_product dbr:Semi-inner-products dbr:Semi-inner_product_in_the_sense_of_Lumer |
is foaf:primaryTopic of |
wikipedia-en:L-semi-inner_product |