Lipps–Meyer law (original) (raw)
The Lipps–Meyer law, named for Theodor Lipps (1851–1914) and Max Friedrich Meyer (1873–1967), hypothesizes that the closure of melodic intervals is determined by "whether or not the end tone of the interval can be represented by the number two or a power of two", in the frequency ratio between notes (see octave). "The 'Lipps–Meyer' Law predicts an 'effect of finality' for a melodic interval that ends on a tone which, in terms of an idealized frequency ratio, can be represented as a power of two."
Property | Value |
---|---|
dbo:abstract | The Lipps–Meyer law, named for Theodor Lipps (1851–1914) and Max Friedrich Meyer (1873–1967), hypothesizes that the closure of melodic intervals is determined by "whether or not the end tone of the interval can be represented by the number two or a power of two", in the frequency ratio between notes (see octave). "The 'Lipps–Meyer' Law predicts an 'effect of finality' for a melodic interval that ends on a tone which, in terms of an idealized frequency ratio, can be represented as a power of two." Thus the interval order matters — a perfect fifth, for instance (C,G), ordered ⟨C,G⟩, 2:3, gives an "effect of indicated continuation", while ⟨G,C⟩, 3:2, gives an "effect of finality". This is a measure of interval strength or stability and finality. Notice that it is similar to the more common measure of interval strength, which is determined by its approximation to a lower, stronger, or higher, weaker, position in the harmonic series. The reason for the effect of finality of such interval ratios may be seen as follows. If is the interval ratio in consideration, where is a positive integer and is the higher harmonic number of the ratio, then its interval can be determined by taking the base-2 logarithm (3/2=7.02 and 4/3=4.98). The difference of these terms is the harmonic series representation of the interval in question (using harmonic numbers), whose bottom note is a transposition of the tonic by n octaves. This suggests why descending interval ratios with denominator a power of two are final. A similar situation is seen if the term in the numerator is a power of two. (en) Закон Липпса — Мейера утверждает, что законченность мелодических интервалов определяется тем, может ли финальный звук конкретного интервала быть выражен числом 2 или его степенью в несократимой дроби, выражающей соотношение частот звуков интервала. В частности порядок звуков в интервале имеет значение.Например если интервал чистой квинты, (отношение 3/2) — например (до-соль) — будут представлен как <до, соль>, (2:3) то возникнет эффект незавершённости.В то же время как порядок <соль, до> (3:2) будет придавать эффект законченности. Этот закон дает оценку силы интервала или его стабильности и завершённости. Назван в честь Теодора Липпса (1851—1914) и Макса Ф. Мейера (1873—1967). (ru) |
dbo:thumbnail | wiki-commons:Special:FilePath/Lipps–Meyer_law_perfect_fifth.png?width=300 |
dbo:wikiPageID | 896221 (xsd:integer) |
dbo:wikiPageLength | 2768 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1022639296 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Max_Friedrich_Meyer dbr:Theodor_Lipps dbr:Logarithm dbr:Harmonic_series_(music) dbr:Exponentiation dbr:Perfect_fifth dbr:Interval_(music) dbr:Tonic_(music) dbc:Intervals_(music) dbc:Consonance_and_dissonance dbr:Octave dbr:File:Lipps–Meyer_law_perfect_fifth.png |
dbp:wikiPageUsesTemplate | dbt:Angbr dbt:Audio dbt:Reflist dbt:Music_cognition |
dcterms:subject | dbc:Intervals_(music) dbc:Consonance_and_dissonance |
rdf:type | yago:Abstraction100002137 yago:Measure100033615 yago:WikicatIntervals yago:TimeInterval115269513 |
rdfs:comment | The Lipps–Meyer law, named for Theodor Lipps (1851–1914) and Max Friedrich Meyer (1873–1967), hypothesizes that the closure of melodic intervals is determined by "whether or not the end tone of the interval can be represented by the number two or a power of two", in the frequency ratio between notes (see octave). "The 'Lipps–Meyer' Law predicts an 'effect of finality' for a melodic interval that ends on a tone which, in terms of an idealized frequency ratio, can be represented as a power of two." (en) Закон Липпса — Мейера утверждает, что законченность мелодических интервалов определяется тем, может ли финальный звук конкретного интервала быть выражен числом 2 или его степенью в несократимой дроби, выражающей соотношение частот звуков интервала. В частности порядок звуков в интервале имеет значение.Например если интервал чистой квинты, (отношение 3/2) — например (до-соль) — будут представлен как <до, соль>, (2:3) то возникнет эффект незавершённости.В то же время как порядок <соль, до> (3:2) будет придавать эффект законченности. (ru) |
rdfs:label | Lipps–Meyer law (en) Закон Липпса — Мейера (ru) |
owl:sameAs | freebase:Lipps–Meyer law wikidata:Lipps–Meyer law dbpedia-ru:Lipps–Meyer law https://global.dbpedia.org/id/3sbeL |
prov:wasDerivedFrom | wikipedia-en:Lipps–Meyer_law?oldid=1022639296&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Lipps–Meyer_law_perfect_fifth.png |
foaf:isPrimaryTopicOf | wikipedia-en:Lipps–Meyer_law |
is dbo:notableIdea of | dbr:Theodor_Lipps |
is dbo:wikiPageRedirects of | dbr:Lipps-Meyer_law |
is dbo:wikiPageWikiLink of | dbr:Resolution_(music) dbr:Theodor_Lipps dbr:Harmonic_series_(music) dbr:Interval_(music) dbr:Lipps-Meyer_law |
is dbp:notableIdeas of | dbr:Theodor_Lipps |
is foaf:primaryTopic of | wikipedia-en:Lipps–Meyer_law |