List of elements by stability of isotopes (original) (raw)
- Atomic nuclei consist of protons and neutrons, which attract each other through the nuclear force, while protons repel each other via the electric force due to their positive charge. These two forces compete, leading to some combinations of neutrons and protons being more stable than others. Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus becomes unstable and subject to certain types of nuclear decay. Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta decay, or electron capture. Many rare types of decay, such as spontaneous fission or cluster decay, are known. (See Radioactive decay for details.) Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. The 83rd element, bismuth, was traditionally regarded as having the heaviest stable isotope, bismuth-209, but in 2003 researchers in Orsay, France, measured the half-life of 209Bi to be 1.9×1019 years. Technetium and promethium (atomic numbers 43 and 61, respectively) and all the elements with an atomic number over 82 only have isotopes that are known to decompose through radioactive decay. No undiscovered elements are expected to be stable; therefore, lead is considered the heaviest stable element. However, it is possible that some isotopes that are now considered stable will be revealed to decay with extremely long half-lives (as with 209Bi). This list depicts what is agreed upon by the consensus of the scientific community as of 2022. For each of the 80 stable elements, the number of the stable isotopes is given. Only 90 isotopes are expected to be perfectly stable, and an additional 161 are energetically unstable, but have never been observed to decay. Thus, 251 isotopes (nuclides) are stable by definition (including tantalum-180m, for which no decay has yet been observed). Those that may in the future be found to be radioactive are expected to have half-lives longer than 1022 years (for example, xenon-134). In April 2019 it was announced that the half-life of xenon-124 had been measured to 1.8 × 1022 years. This is the longest half-life directly measured for any unstable isotope; only the half-life of tellurium-128 is longer. Of the chemical elements, only 1 element (tin) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable isotopes, 16 have 2 stable isotopes, and 26 have 1 stable isotope. Additionally, about 31 nuclides of the naturally occurring elements have unstable isotopes with a half-life larger than the age of the Solar System (~109 years or more). An additional four nuclides have half-lives longer than 100 million years, which is far less than the age of the solar system, but long enough for some of them to have survived. These 35 radioactive naturally occurring nuclides comprise the radioactive primordial nuclides. The total number of primordial nuclides is then 251 (the stable nuclides) plus the 35 radioactive primordial nuclides, for a total of 286 primordial nuclides. This number is subject to change if new shorter-lived primordials are identified on Earth. One of the primordial nuclides is tantalum-180m, which is predicted to have a half-life in excess of 1015 years, but has never been observed to decay. The even-longer half-life of 2.2 × 1024 years of tellurium-128 was measured by a unique method of detecting its radiogenic daughter xenon-128 and is the longest known experimentally measured half-life. Another notable example is the only naturally occurring isotope of bismuth, bismuth-209, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called primordial isotope. All the primordial isotopes are given in order of their decreasing abundance on Earth. For a list of primordial nuclides in order of half-life, see List of nuclides. 118 chemical elements are known to exist. All elements to element 94 are found in nature, and the remainder of the discovered elements are artificially produced, with isotopes all known to be highly radioactive with relatively short half-lives (see below). The elements in this list are ordered according to the lifetime of their most stable isotope. Of these, three elements (bismuth, thorium, and uranium) are primordial because they have half-lives long enough to still be found on the Earth, while all the others are produced either by radioactive decay or are synthesized in laboratories and nuclear reactors. Only 13 of the 38 known-but-unstable elements have isotopes with a half-life of at least 100 years. Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine. Some of the heavier elements in the periodic table may be revealed to have yet-undiscovered isotopes with longer lifetimes than those listed here. About 338 nuclides are found naturally on Earth. These comprise 251 stable isotopes, and with the addition of the 35 long-lived radioisotopes with half-lives longer than 100 million years, a total of 286 primordial nuclides, as noted above. The nuclides found naturally comprise not only the 286 primordials, but also include about 52 more short-lived isotopes (defined by a half-life less than 100 million years, too short to have survived from the formation of the Earth) that are daughters of primordial isotopes (such as radium from uranium); or else are made by energetic natural processes, such as carbon-14 made from atmospheric nitrogen by bombardment from cosmic rays. (en)
- Questa è una lista degli elementi chimici e dei loro isotopi, elencati in termini di stabilità. I nuclei atomici consistono di protoni e di neutroni, che si attraggono l'un l'altro grazie alla forza nucleare, mentre i protoni si respingono l'un l'altro per effetto della forza elettrica dovuta alla loro carica positiva. Queste due forze sono in concorrenza tra loro, determinando alcune combinazioni di neutroni e protoni che sono più stabili di altre. I neutroni stabilizzano il nucleo, perché si attraggono tra loro e con i protoni ugualmente per effetto della forza nucleare, che è tanto potente da aiutare a compensare la repulsione elettrica tra i protoni. Di conseguenza, via via che il numero dei protoni aumenta, è necessario un rapporto crescente dei neutroni rispetto ai protoni per formare un nucleo stabile. Tuttavia, se rispetto al rapporto ottimale il numero dei protoni è troppo alto o troppo basso, il nucleo diventa instabile e soggetto a certi tipi di decadimento nucleare. Gli isotopi instabili decadono attraverso vari modi di decadimento radioattivo, i più comuni dei quali sono il decadimento alfa, il decadimento beta o la cattura elettronica. Si conoscono però altri tipi più rari di decadimento, come la fissione spontanea o il . (it)
- 안정 원소는 하나 이상의 안정 동위 원소를 가진 화학 원소이다. 납은 가장 무거운 안정 원소이다 (단, 납보다 무거운 비스무트도 반감기가 매우 길어 안정 원소로 취급되기도 한다). (ko)
- dbt:Chem
- dbt:Citation_needed
- dbt:Clear
- dbt:Efn
- dbt:Lead_too_long
- dbt:Notelist
- dbt:Reflist
- dbt:Section_link
- dbt:Short_description
- dbt:Val
- dbt:Originalresearch
- dbt:SimpleNuclide
- dbt:Navbox_periodic_table
- dbt:Periodic_table_(transuranium_element)
- 안정 원소는 하나 이상의 안정 동위 원소를 가진 화학 원소이다. 납은 가장 무거운 안정 원소이다 (단, 납보다 무거운 비스무트도 반감기가 매우 길어 안정 원소로 취급되기도 한다). (ko)
- Atomic nuclei consist of protons and neutrons, which attract each other through the nuclear force, while protons repel each other via the electric force due to their positive charge. These two forces compete, leading to some combinations of neutrons and protons being more stable than others. Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus becomes unstable and subject to certain types of nuclear decay. Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta de (en)
- Questa è una lista degli elementi chimici e dei loro isotopi, elencati in termini di stabilità. I nuclei atomici consistono di protoni e di neutroni, che si attraggono l'un l'altro grazie alla forza nucleare, mentre i protoni si respingono l'un l'altro per effetto della forza elettrica dovuta alla loro carica positiva. Queste due forze sono in concorrenza tra loro, determinando alcune combinazioni di neutroni e protoni che sono più stabili di altre. I neutroni stabilizzano il nucleo, perché si attraggono tra loro e con i protoni ugualmente per effetto della forza nucleare, che è tanto potente da aiutare a compensare la repulsione elettrica tra i protoni. Di conseguenza, via via che il numero dei protoni aumenta, è necessario un rapporto crescente dei neutroni rispetto ai protoni per formar (it)
- Elementi chimici per stabilità degli isotopi (it)
- List of elements by stability of isotopes (en)
- 안정 원소 (ko)
is dbo:wikiPageWikiLink of
- dbr:Primordial_nuclide
- dbr:Monoisotopic_element
- dbr:Neutron_number
- dbr:Mononuclidic_element
- dbr:Bismuth-209
- dbr:List_of_nuclides
- dbr:List_of_radioactive_nuclides_by_half-life
- dbr:Nuclide
- dbr:Sneden's_Star
- dbr:Tin
- dbr:Nuclear_technology
- dbr:Isotope
- dbr:Isotopes_of_tin
- dbr:Stable_element
- dbr:Stable_nuclide
- dbr:Even_and_odd_atomic_nuclei
- dbr:List_of_elements_by_isotope_stability
- dbr:List_of_elements_by_nuclear_stability
- dbr:List_of_elements_by_nucleus_stability
- dbr:List_of_elements_by_number_of_isotopes
- dbr:List_of_stable_isotopes
- dbr:List_of_Radioactive_Elements
- dbr:Stability_of_isotopes