Numerical analytic continuation (original) (raw)

Property Value
dbo:abstract In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies. Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method, the average spectrum method and Pade approximation methods. (en)
dbo:wikiPageExternalLink https://spm-lab.github.io/SpM/manual/build/html/index.html https://www.spektra.app https://github.com/CQMP/Maxent
dbo:wikiPageID 66228158 (xsd:integer)
dbo:wikiPageLength 8341 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119164046 (xsd:integer)
dbo:wikiPageWikiLink dbr:Analytic_continuation dbr:Green's_function_(many-body_theory) dbr:Kramers–Kronig_relations dbr:Linear_response_function dbr:Quantum_Monte_Carlo dbr:Regularization_(mathematics) dbc:Mathematical_physics dbc:Quantum_Monte_Carlo dbr:Boson dbr:Fermion dbr:Fredholm_integral_equation dbr:Inverse_Fourier_transform dbr:Matsubara_frequency dbr:Imaginary_time dbr:Many-body_physics dbr:Analytic_continuation_along_a_curve dbr:Fredholm_integral_equation_of_the_first_kind
dbp:wikiPageUsesTemplate dbt:Reflist
dct:subject dbc:Mathematical_physics dbc:Quantum_Monte_Carlo
rdfs:comment In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies. (en)
rdfs:label Numerical analytic continuation (en)
owl:sameAs wikidata:Numerical analytic continuation https://global.dbpedia.org/id/FLTKY
prov:wasDerivedFrom wikipedia-en:Numerical_analytic_continuation?oldid=1119164046&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Numerical_analytic_continuation
is dbo:wikiPageRedirects of dbr:Numerical_Analytic_Continuation dbr:Analytic_continuation_(many-body_theory)
is dbo:wikiPageWikiLink of dbr:Analytic_continuation dbr:Green's_function_(many-body_theory) dbr:Kramers–Kronig_relations dbr:Numerical_Analytic_Continuation dbr:Quantum_Monte_Carlo dbr:Analytic_continuation_(many-body_theory)
is foaf:primaryTopic of wikipedia-en:Numerical_analytic_continuation