Poly-Bernoulli number (original) (raw)
Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen.
Property | Value |
---|---|
dbo:abstract | In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of by (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board (see for definition). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy which can be seen as an analog of Fermat's little theorem. Further, the equation has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem.Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as . (en) Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv) |
dbo:wikiPageExternalLink | http://www.integers-ejcnt.org/vol8.html http://projecteuclid.org/euclid.nmj/1114630825 http://jtnb.cedram.org/item%3Fid=JTNB_1997__9_1_221_0 |
dbo:wikiPageID | 3492608 (xsd:integer) |
dbo:wikiPageLength | 4414 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1122566170 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Bernoulli_number dbr:Bernoulli_numbers dbr:Bernoulli_polynomials dbc:Enumerative_combinatorics dbr:Mathematics dbr:Bernoulli_polynomials_of_the_second_kind dbc:Integer_sequences dbr:Fermat's_Last_Theorem dbr:Fermat's_little_theorem dbr:Gregory_coefficients dbr:Polylogarithm dbr:Stirling_polynomials dbr:Binary_matrix dbr:Stirling_number_of_the_second_kind dbr:Stirling_numbers dbr:Oeis:A329718 dbr:Poly-Euler_numbers |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Reflist |
dct:subject | dbc:Enumerative_combinatorics dbc:Integer_sequences |
rdf:type | yago:Abstraction100002137 yago:Arrangement107938773 yago:Group100031264 yago:Ordering108456993 yago:WikicatIntegerSequences yago:Sequence108459252 yago:Series108457976 |
rdfs:comment | Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv) In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy (en) |
rdfs:label | Poly-Bernoulli number (en) Polybernoullital (sv) |
owl:sameAs | freebase:Poly-Bernoulli number yago-res:Poly-Bernoulli number wikidata:Poly-Bernoulli number dbpedia-sv:Poly-Bernoulli number https://global.dbpedia.org/id/4u8VD |
prov:wasDerivedFrom | wikipedia-en:Poly-Bernoulli_number?oldid=1122566170&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Poly-Bernoulli_number |
is dbo:wikiPageRedirects of | dbr:Poly-Bernoulli_numbers |
is dbo:wikiPageWikiLink of | dbr:Bernoulli_number dbr:Bernoulli_polynomials_of_the_second_kind dbr:Mittag-Leffler_polynomials dbr:List_of_things_named_after_members_of_the_Bernoulli_family dbr:Poly-Bernoulli_numbers |
is foaf:primaryTopic of | wikipedia-en:Poly-Bernoulli_number |