Probabilistic logic network (original) (raw)
A probabilistic logic network (PLN) is a conceptual, mathematical, and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain lo
Property | Value |
---|---|
dbo:abstract | A probabilistic logic network (PLN) is a conceptual, mathematical, and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality. PLN was developed by Ben Goertzel, Matt Ikle, Izabela Lyon Freire Goertzel, and Ari Heljakka for use as a cognitive algorithm used by MindAgents within the OpenCog Core. PLN was developed originally for use within the Novamente Cognition Engine. (en) A rede lógica probabilística (RLP) é uma abordagem conceitual, matemática e computacional para inferência incerta; inspirado em lógica de programação, mas usando probabilidade em lugar de valorações verdade , e incerteza fracionária no lugar de valores (conhecido / desconhecido) . A fim de realizar um raciocínio eficaz em circunstâncias do mundo real, O software de inteligência artificial deve lidar com a incerteza. No entanto, as abordagens anteriores a inferência incerta não tem o escopo necessário para fornecer cognitivamente um tratamento integrado das formas díspares de incerteza, como eles se manifestam dentro das várias formas de inferência pragmáticas. Indo além das abordagens probabilísticas anteriores a inferência incerta, RLP é capaz de abarcar dentro da lógica tais idéias incertas como indução, abdução, analogia, imprecisão e especulação, e do raciocinar sobre o tempo e causalidade. RLP foi desenvolvido por Ben Goertzel, Matt Ikle, Izabela Lyon Freire Goertzel e Ari Heljakka para uso como um algoritmo cognitivo utilizado por MindAgents (empresa) dentro do núcleo OpenCog. RLP foi desenvolvido originalmente para uso dentro do Novamente Cognição Engine (empresa). (pt) |
dbo:wikiPageExternalLink | https://archive.org/details/probabilisticlog00goer https://archive.org/details/probabilisticlog00goer/page/n330 https://web.archive.org/web/20090907133322/http:/www.opencog.org/wiki/Probabilistic_Logic_Networks |
dbo:wikiPageID | 19890479 (xsd:integer) |
dbo:wikiPageLength | 4697 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1112793201 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Predicate_logic dbr:Ben_Goertzel dbc:Probabilistic_arguments dbr:Intensional_logic dbc:Artificial_intelligence dbr:Combinatory_logic dbr:Analogy dbr:Dempster–Shafer_theory dbr:Causality dbr:Truth_value dbr:Fuzzy_logic dbr:Logic_programming dbr:Abductive_reasoning dbc:Non-classical_logic dbr:Bayesian_networks dbr:Knowledge_base dbr:Reinforcement_learning dbr:Artificial_intelligence dbr:Term_logic dbr:Autoepistemic_logic dbr:OpenCog dbr:Markov_logic_network dbr:Virtual_world dbr:Imprecise_probability dbr:Probabilistic_logic dbr:Uncertain_inference dbr:Narrow_AI |
dbp:wikiPageUsesTemplate | dbt:Citation_needed dbt:Cite_book dbt:Multiple_issues dbt:One_source dbt:Primary_sources dbt:Short_description dbt:Advertisement |
dct:subject | dbc:Probabilistic_arguments dbc:Artificial_intelligence dbc:Non-classical_logic |
gold:hypernym | dbr:Approach |
rdf:type | yago:Abstraction100002137 yago:Argument106648724 yago:Communication100033020 yago:Evidence106643408 yago:Indication106797169 dbo:ProgrammingLanguage yago:WikicatProbabilisticArguments |
rdfs:comment | A probabilistic logic network (PLN) is a conceptual, mathematical, and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain lo (en) A rede lógica probabilística (RLP) é uma abordagem conceitual, matemática e computacional para inferência incerta; inspirado em lógica de programação, mas usando probabilidade em lugar de valorações verdade , e incerteza fracionária no lugar de valores (conhecido / desconhecido) . A fim de realizar um raciocínio eficaz em circunstâncias do mundo real, O software de inteligência artificial deve lidar com a incerteza. No entanto, as abordagens anteriores a inferência incerta não tem o escopo necessário para fornecer cognitivamente um tratamento integrado das formas díspares de incerteza, como eles se manifestam dentro das várias formas de inferência pragmáticas. Indo além das abordagens probabilísticas anteriores a inferência incerta, RLP é capaz de abarcar dentro da lógica tais idéias incer (pt) |
rdfs:label | Probabilistic logic network (en) Rede Lógica Probabilística (pt) |
owl:sameAs | freebase:Probabilistic logic network yago-res:Probabilistic logic network wikidata:Probabilistic logic network dbpedia-pt:Probabilistic logic network https://global.dbpedia.org/id/4tT6c |
prov:wasDerivedFrom | wikipedia-en:Probabilistic_logic_network?oldid=1112793201&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Probabilistic_logic_network |
is dbo:wikiPageDisambiguates of | dbr:PLN |
is dbo:wikiPageRedirects of | dbr:Probabilistic_Logic_Network dbr:Probabalistic_logic_network |
is dbo:wikiPageWikiLink of | dbr:Probabilistic_soft_logic dbr:Dynamic_Bayesian_network dbr:Index_of_logic_articles dbr:Index_of_robotics_articles dbr:Semantic_reasoner dbr:Probabilistic_Logic_Network dbr:PLN dbr:Knowledge_crystal dbr:Translation_(biology) dbr:Autoepistemic_logic dbr:OpenCog dbr:Markov_logic_network dbr:Uncertain_inference dbr:Probabalistic_logic_network |
is foaf:primaryTopic of | wikipedia-en:Probabilistic_logic_network |