dbo:abstract |
Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains.It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.PSL combines two tools: first-order logic, with its ability to succinctly represent complex phenomena, and probabilistic graphical models, which capture the uncertainty and incompleteness inherent in real-world knowledge.More specifically, PSL uses "soft" logic as its logical component and Markov random fields as its statistical model.PSL provides sophisticated inference techniques for finding the most likely answer (i.e. the maximum a posteriori (MAP) state).The "softening" of the logical formulas makes inference a polynomial time operation rather than an NP-hard operation. (en) Probabilistic soft logic (PSL)は、関係するドメインの中での集合的な、確率的理由づけのためのSRLフレームワーク。PSLは[0,1]の間の値をとるソフト真理変数に関する確率変数のグラフィカルモデルのためのテンプレート言語として一階述語論理を用いる。 (ja) |
dbo:computingPlatform |
dbr:Linux dbr:MacOS dbr:Windows |
dbo:developer |
https://linqs.soe.ucsc.edu/ |
dbo:genre |
dbr:Machine_Learning dbr:Statistical_relational_learning |
dbo:latestReleaseDate |
2020-05-20 (xsd:date) |
dbo:latestReleaseVersion |
2.2.2 |
dbo:license |
dbr:Apache_License_2.0 |
dbo:programmingLanguage |
dbr:Java_(programming_language) |
dbo:releaseDate |
2011-09-23 (xsd:date) |
dbo:thumbnail |
wiki-commons:Special:FilePath/PSL_Logo.png?width=300 |
dbo:wikiPageExternalLink |
https://linqs.soe.ucsc.edu/ https://psl.linqs.org https://github.com/linqs/psl https://www.youtube.com/channel/UCJjzqRLiAIa3qENUkzK0zMA |
dbo:wikiPageID |
44132510 (xsd:integer) |
dbo:wikiPageLength |
16635 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1036442666 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Probabilistic_logic_network dbr:Python_(programming_language) dbr:Command-line_interface dbr:Social_network dbr:Convex_function dbc:Markov_networks dbr:Apache_Maven dbr:Application_programming_interface dbr:Linux dbr:MacOS dbr:Machine_Learning dbr:Machine_learning dbr:Closed-world_assumption dbr:Windows dbr:Fuzzy_logic dbr:Linear_combination dbr:Link_prediction dbr:Lise_Getoor dbr:Logarithmically_convex_function dbr:First-order_logic dbr:Pandas_(software) dbr:Graphical_model dbr:Journal_of_Machine_Learning_Research dbr:Java_(programming_language) dbr:Łukasiewicz_logic dbc:Bayesian_statistics dbr:Collective_classification dbr:Record_linkage dbr:Disjunctive_normal_form dbr:Polynomial_time dbr:Ontology_alignment dbr:Markov_logic_network dbr:Markov_random_field dbr:Maximum_a_posteriori_estimation dbr:Statistical_relational_learning dbr:NP-hardness dbr:Python_Package_Index dbr:Apache_License_2.0 dbr:Markov_random_fields dbr:Lukasiewicz_fuzzy_logic |
dbp:developer |
https://linqs.soe.ucsc.edu/ |
dbp:genre |
dbr:Machine_Learning dbr:Statistical_relational_learning |
dbp:latestReleaseDate |
2020-05-20 (xsd:date) |
dbp:latestReleaseVersion |
2.200000 (xsd:double) |
dbp:license |
dbr:Apache_License_2.0 |
dbp:logo |
PSL_Logo.png (en) |
dbp:name |
PSL (en) |
dbp:platform |
dbr:Linux dbr:MacOS dbr:Windows |
dbp:programmingLanguage |
dbr:Java_(programming_language) |
dbp:released |
2011-09-23 (xsd:date) |
dbp:repo |
https://github.com/linqs/psl |
dbp:website |
https://psl.linqs.org |
dbp:wikiPageUsesTemplate |
dbt:Infobox_software dbt:Reflist dbt:Start_date |
dct:subject |
dbc:Markov_networks dbc:Bayesian_statistics |
gold:hypernym |
dbr:Framework |
rdf:type |
owl:Thing dbo:Software schema:CreativeWork dbo:Work wikidata:Q386724 wikidata:Q7397 |
rdfs:comment |
Probabilistic soft logic (PSL)は、関係するドメインの中での集合的な、確率的理由づけのためのSRLフレームワーク。PSLは[0,1]の間の値をとるソフト真理変数に関する確率変数のグラフィカルモデルのためのテンプレート言語として一階述語論理を用いる。 (ja) Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains.It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.PSL combines two tools: first-order logic, with its ability to succinctly represent complex phenomena, and probabilistic graphical models, which capture the uncertainty and incompleteness inherent in real-world knowledge.More specifically, PSL uses "soft" logic as its logical component and Markov random fields as its statistical model.PSL provides sophisticated inference techniques for finding the most likely answer (i.e. the maximum a posteriori (MAP) state).The "softening" of the logical formulas make (en) |
rdfs:label |
Probabilstic soft logic (ja) Probabilistic soft logic (en) |
owl:sameAs |
freebase:Probabilistic soft logic yago-res:Probabilistic soft logic wikidata:Probabilistic soft logic dbpedia-ja:Probabilistic soft logic https://global.dbpedia.org/id/mv7j |
prov:wasDerivedFrom |
wikipedia-en:Probabilistic_soft_logic?oldid=1036442666&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/PSL_Logo.png |
foaf:homepage |
https://psl.linqs.org |
foaf:isPrimaryTopicOf |
wikipedia-en:Probabilistic_soft_logic |
foaf:name |
PSL (en) |
is dbo:knownFor of |
dbr:Lise_Getoor |
is dbo:wikiPageDisambiguates of |
dbr:PSL |
is dbo:wikiPageRedirects of |
dbr:Probabilistic_Soft_Logic |
is dbo:wikiPageWikiLink of |
dbr:Probabilistic_Soft_Logic dbr:PSL dbr:Link_prediction dbr:Lise_Getoor dbr:Markov_logic_network dbr:Statistical_relational_learning dbr:Probabilistic_logic dbr:Outline_of_machine_learning |
is foaf:primaryTopic of |
wikipedia-en:Probabilistic_soft_logic |