Probabilistic soft logic (original) (raw)

Property Value
dbo:abstract Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains.It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.PSL combines two tools: first-order logic, with its ability to succinctly represent complex phenomena, and probabilistic graphical models, which capture the uncertainty and incompleteness inherent in real-world knowledge.More specifically, PSL uses "soft" logic as its logical component and Markov random fields as its statistical model.PSL provides sophisticated inference techniques for finding the most likely answer (i.e. the maximum a posteriori (MAP) state).The "softening" of the logical formulas makes inference a polynomial time operation rather than an NP-hard operation. (en) Probabilistic soft logic (PSL)は、関係するドメインの中での集合的な、確率的理由づけのためのSRLフレームワーク。PSLは[0,1]の間の値をとるソフト真理変数に関する確率変数のグラフィカルモデルのためのテンプレート言語として一階述語論理を用いる。 (ja)
dbo:computingPlatform dbr:Linux dbr:MacOS dbr:Windows
dbo:developer https://linqs.soe.ucsc.edu/
dbo:genre dbr:Machine_Learning dbr:Statistical_relational_learning
dbo:latestReleaseDate 2020-05-20 (xsd:date)
dbo:latestReleaseVersion 2.2.2
dbo:license dbr:Apache_License_2.0
dbo:programmingLanguage dbr:Java_(programming_language)
dbo:releaseDate 2011-09-23 (xsd:date)
dbo:thumbnail wiki-commons:Special:FilePath/PSL_Logo.png?width=300
dbo:wikiPageExternalLink https://linqs.soe.ucsc.edu/ https://psl.linqs.org https://github.com/linqs/psl https://www.youtube.com/channel/UCJjzqRLiAIa3qENUkzK0zMA
dbo:wikiPageID 44132510 (xsd:integer)
dbo:wikiPageLength 16635 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1036442666 (xsd:integer)
dbo:wikiPageWikiLink dbr:Probabilistic_logic_network dbr:Python_(programming_language) dbr:Command-line_interface dbr:Social_network dbr:Convex_function dbc:Markov_networks dbr:Apache_Maven dbr:Application_programming_interface dbr:Linux dbr:MacOS dbr:Machine_Learning dbr:Machine_learning dbr:Closed-world_assumption dbr:Windows dbr:Fuzzy_logic dbr:Linear_combination dbr:Link_prediction dbr:Lise_Getoor dbr:Logarithmically_convex_function dbr:First-order_logic dbr:Pandas_(software) dbr:Graphical_model dbr:Journal_of_Machine_Learning_Research dbr:Java_(programming_language) dbr:Łukasiewicz_logic dbc:Bayesian_statistics dbr:Collective_classification dbr:Record_linkage dbr:Disjunctive_normal_form dbr:Polynomial_time dbr:Ontology_alignment dbr:Markov_logic_network dbr:Markov_random_field dbr:Maximum_a_posteriori_estimation dbr:Statistical_relational_learning dbr:NP-hardness dbr:Python_Package_Index dbr:Apache_License_2.0 dbr:Markov_random_fields dbr:Lukasiewicz_fuzzy_logic
dbp:developer https://linqs.soe.ucsc.edu/
dbp:genre dbr:Machine_Learning dbr:Statistical_relational_learning
dbp:latestReleaseDate 2020-05-20 (xsd:date)
dbp:latestReleaseVersion 2.200000 (xsd:double)
dbp:license dbr:Apache_License_2.0
dbp:logo PSL_Logo.png (en)
dbp:name PSL (en)
dbp:platform dbr:Linux dbr:MacOS dbr:Windows
dbp:programmingLanguage dbr:Java_(programming_language)
dbp:released 2011-09-23 (xsd:date)
dbp:repo https://github.com/linqs/psl
dbp:website https://psl.linqs.org
dbp:wikiPageUsesTemplate dbt:Infobox_software dbt:Reflist dbt:Start_date
dct:subject dbc:Markov_networks dbc:Bayesian_statistics
gold:hypernym dbr:Framework
rdf:type owl:Thing dbo:Software schema:CreativeWork dbo:Work wikidata:Q386724 wikidata:Q7397
rdfs:comment Probabilistic soft logic (PSL)は、関係するドメインの中での集合的な、確率的理由づけのためのSRLフレームワーク。PSLは[0,1]の間の値をとるソフト真理変数に関する確率変数のグラフィカルモデルのためのテンプレート言語として一階述語論理を用いる。 (ja) Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains.It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.PSL combines two tools: first-order logic, with its ability to succinctly represent complex phenomena, and probabilistic graphical models, which capture the uncertainty and incompleteness inherent in real-world knowledge.More specifically, PSL uses "soft" logic as its logical component and Markov random fields as its statistical model.PSL provides sophisticated inference techniques for finding the most likely answer (i.e. the maximum a posteriori (MAP) state).The "softening" of the logical formulas make (en)
rdfs:label Probabilstic soft logic (ja) Probabilistic soft logic (en)
owl:sameAs freebase:Probabilistic soft logic yago-res:Probabilistic soft logic wikidata:Probabilistic soft logic dbpedia-ja:Probabilistic soft logic https://global.dbpedia.org/id/mv7j
prov:wasDerivedFrom wikipedia-en:Probabilistic_soft_logic?oldid=1036442666&ns=0
foaf:depiction wiki-commons:Special:FilePath/PSL_Logo.png
foaf:homepage https://psl.linqs.org
foaf:isPrimaryTopicOf wikipedia-en:Probabilistic_soft_logic
foaf:name PSL (en)
is dbo:knownFor of dbr:Lise_Getoor
is dbo:wikiPageDisambiguates of dbr:PSL
is dbo:wikiPageRedirects of dbr:Probabilistic_Soft_Logic
is dbo:wikiPageWikiLink of dbr:Probabilistic_Soft_Logic dbr:PSL dbr:Link_prediction dbr:Lise_Getoor dbr:Markov_logic_network dbr:Statistical_relational_learning dbr:Probabilistic_logic dbr:Outline_of_machine_learning
is foaf:primaryTopic of wikipedia-en:Probabilistic_soft_logic