Pure spinor (original) (raw)

Property Value
dbo:abstract In the domain of mathematics known as representation theory, pure spinors (or simple spinors) are spinors that are annihilated under the Clifford action by a maximal isotropic subspace of the space of vectors with respect to the scalar product determining the Clifford algebra. They were introduced by Élie Cartan in the 1930s to classify complex structures. Pure spinors were a key ingredient in the study of spin geometry and twistor theory,introduced by Roger Penrose in the 1960s. (en) 수학과 이론물리학에서 순수 스피너(純粹spinor, 영어: pure spinor)는 가장 많은 수의 디랙 행렬들에 의하여 상쇄되는 바일 스피너이다. (ko) 在表示论这个数学领域中,特殊正交群的中,纯旋量(pure spinor 或单旋量 simple spinor)是能被克利福德代数的最大可能子空间零化的旋量。它们在1930年代被埃利·嘉当为了分类复结构而引进。纯旋量被引入理论物理,1960年代在罗杰·彭罗斯的推动下在自旋几何的研究中变得愈发重要起来;它们在彭罗斯的扭量理论的研究中成为基本对象。 (zh)
dbo:wikiPageExternalLink http://csusap.csu.edu.au/~pcharlto/charlton_thesis.pdf
dbo:wikiPageID 6843863 (xsd:integer)
dbo:wikiPageLength 5326 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1100525461 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quadratic_equation dbr:Roger_Penrose dbr:Module_(mathematics) dbr:Representation_theory dbr:Almost_complex_manifold dbc:Spinors dbr:Homogeneous_space dbr:Vector_space dbr:Complex_number dbr:Mathematics dbr:Generalized_complex_structure dbr:Clifford_algebra dbr:Gamma_matrices dbr:Compactification_(physics) dbr:Complex_dimension dbr:Élie_Cartan dbr:Nigel_Hitchin dbr:Isotropic_subspace dbr:Spinor dbr:Twistor_theory dbr:Spinor_bundle dbr:Scalar_product dbr:Generalized_Calabi–Yau_manifold dbr:Algebra_(mathematics)
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description
dcterms:subject dbc:Spinors
gold:hypernym dbr:Spinors
rdfs:comment In the domain of mathematics known as representation theory, pure spinors (or simple spinors) are spinors that are annihilated under the Clifford action by a maximal isotropic subspace of the space of vectors with respect to the scalar product determining the Clifford algebra. They were introduced by Élie Cartan in the 1930s to classify complex structures. Pure spinors were a key ingredient in the study of spin geometry and twistor theory,introduced by Roger Penrose in the 1960s. (en) 수학과 이론물리학에서 순수 스피너(純粹spinor, 영어: pure spinor)는 가장 많은 수의 디랙 행렬들에 의하여 상쇄되는 바일 스피너이다. (ko) 在表示论这个数学领域中,特殊正交群的中,纯旋量(pure spinor 或单旋量 simple spinor)是能被克利福德代数的最大可能子空间零化的旋量。它们在1930年代被埃利·嘉当为了分类复结构而引进。纯旋量被引入理论物理,1960年代在罗杰·彭罗斯的推动下在自旋几何的研究中变得愈发重要起来;它们在彭罗斯的扭量理论的研究中成为基本对象。 (zh)
rdfs:label 순수 스피너 (ko) Pure spinor (en) 纯旋量 (zh)
owl:sameAs freebase:Pure spinor wikidata:Pure spinor dbpedia-ko:Pure spinor dbpedia-la:Pure spinor dbpedia-zh:Pure spinor https://global.dbpedia.org/id/4tbC5
prov:wasDerivedFrom wikipedia-en:Pure_spinor?oldid=1100525461&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Pure_spinor
is dbo:wikiPageRedirects of dbr:Projective_pure_spinor dbr:Simple_spinor
is dbo:wikiPageWikiLink of dbr:Almost_complex_manifold dbr:Index_of_physics_articles_(P) dbr:Generalized_complex_structure dbr:Élie_Cartan dbr:GS_formalism dbr:Spinor dbr:Twistor_theory dbr:List_of_things_named_after_Élie_Cartan dbr:Projective_pure_spinor dbr:Simple_spinor
is foaf:primaryTopic of wikipedia-en:Pure_spinor