dbo:abstract |
En théorie additive des nombres et en combinatoire, une somme restreinte d'ensembles est[réf. souhaitée] un ensemble de la forme où A1, … , An sont des parties d'un groupe abélien G et B est une partie de Gn. Le groupe G considéré est souvent le groupe additif d'un anneau commutatif, comme l'anneau ℤ des entiers ou un anneau ℤ/nℤ. Si l'ensemble B qu'on exclut est vide, S est simplement la somme d'ensembles usuelle A1 + … + An (notée nA si tous les Ak sont égaux à un même ensemble A). Si B est l'ensemble des n-uplets d'éléments non tous distincts, alors S est noté ou encore lorsque tous les Ak sont égaux à A. (fr) In additive number theory and combinatorics, a restricted sumset has the form where are finite nonempty subsets of a field F and is a polynomial over F. If is a constant non-zero function, for example for any , then S is the usual sumset which is denoted by nA if . When S is written as which is denoted by if . Note that |S |
dbo:wikiPageID |
7960510 (xsd:integer) |
dbo:wikiPageLength |
7747 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1054332858 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Paul_Erdős dbc:Additive_number_theory dbr:Modular_arithmetic dbr:Combinatorics dbr:Additive_number_theory dbc:Additive_combinatorics dbr:Total_degree dbr:Cyclic_group dbc:Sumsets dbr:Field_(mathematics) dbr:Noga_Alon dbr:Nullstellensatz dbr:Graduate_Texts_in_Mathematics dbr:Hans_Heilbronn dbr:Harold_Davenport dbc:Augustin-Louis_Cauchy dbr:Imre_Z._Ruzsa dbr:Kneser's_theorem_(combinatorics) dbr:Sumset dbr:Polynomial_method_in_combinatorics dbr:Erdős–Ginzburg–Ziv_theorem dbr:Springer-Verlag dbr:Augustin_Louis_Cauchy dbr:Zhi-Wei_Sun |
dbp:title |
Erdős-Heilbronn Conjecture (en) |
dbp:urlname |
Erdos-HeilbronnConjecture (en) |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Mathworld dbt:Reflist dbt:Short_description |
dct:subject |
dbc:Additive_number_theory dbc:Additive_combinatorics dbc:Sumsets dbc:Augustin-Louis_Cauchy |
rdfs:comment |
In additive number theory and combinatorics, a restricted sumset has the form where are finite nonempty subsets of a field F and is a polynomial over F. If is a constant non-zero function, for example for any , then S is the usual sumset which is denoted by nA if . When S is written as which is denoted by if . Note that |S |
rdfs:label |
Somme restreinte d'ensembles (fr) Restricted sumset (en) |
owl:sameAs |
freebase:Restricted sumset wikidata:Restricted sumset dbpedia-fr:Restricted sumset https://global.dbpedia.org/id/51Pxq |
prov:wasDerivedFrom |
wikipedia-en:Restricted_sumset?oldid=1054332858&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Restricted_sumset |
is dbo:knownFor of |
dbr:Noga_Alon |
is dbo:wikiPageRedirects of |
dbr:Combinatorial_Nullstellensatz dbr:Cauchy-Davenport_theorem dbr:Cauchy–Davenport_theorem dbr:Erdos-Heilbronn_conjecture dbr:Erdos–Heilbronn_conjecture dbr:Erdős-Heilbronn_conjecture dbr:Erdős–Heilbronn_conjecture |
is dbo:wikiPageWikiLink of |
dbr:List_of_conjectures_by_Paul_Erdős dbr:List_of_number_theory_topics dbr:Combinatorial_Nullstellensatz dbr:Additive_combinatorics dbr:Cauchy-Davenport_theorem dbr:Cauchy–Davenport_theorem dbr:Erdos-Heilbronn_conjecture dbr:Erdos–Heilbronn_conjecture dbr:Erdős-Heilbronn_conjecture dbr:Erdős–Heilbronn_conjecture dbr:Barycentric-sum_problem dbr:Noga_Alon dbr:Sun_Zhiwei dbr:List_of_things_named_after_Augustin-Louis_Cauchy dbr:Sumset dbr:Polynomial_method_in_combinatorics dbr:Outline_of_combinatorics |
is dbp:knownFor of |
dbr:Noga_Alon |
is foaf:primaryTopic of |
wikipedia-en:Restricted_sumset |