dbo:abstract |
In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of this refined conjecture to higher orders of vanishing. (en) 数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja) |
dbo:wikiPageExternalLink |
http://www.mathematics.jhu.edu/stark/ https://www.springer.com/birkhauser/mathematics/book/978-0-8176-3188-8 http://www.math.umass.edu/~dhayes/lecs.html https://arxiv.org/abs/2010.00657 https://web.archive.org/web/20120204044231/http:/www.math.umass.edu/~dhayes/lecs.html https://web.archive.org/web/20120426023029/http:/www.mathematics.jhu.edu/stark/ http://www.numdam.org/item%3Fid=AIF_1996__46_1_33_0 |
dbo:wikiPageID |
5685631 (xsd:integer) |
dbo:wikiPageLength |
8361 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1045234031 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Quadratic_field dbr:Algebraic_number_field dbr:Annales_de_l'Institut_Fourier dbr:Regulator_(mathematics) dbr:Dedekind_zeta_function dbc:Conjectures dbr:Complex_analysis dbr:Conjecture dbr:Cristian_Dumitru_Popescu dbr:Function_field_of_an_algebraic_variety dbr:Galois_extension dbr:Alain_Connes dbr:Algebraic_number dbr:American_Mathematical_Society dbc:Zeta_and_L-functions dbr:Number_theory dbr:Hilbert's_twelfth_problem dbr:Hilbert_class_field dbr:Abelian_extension dbc:Algebraic_number_theory dbc:Field_(mathematics) dbc:Unsolved_problems_in_number_theory dbr:Advances_in_Mathematics dbr:Coefficient dbr:Artin_L-function dbr:Class_field_theory dbr:Rational_number dbr:Noncommutative_geometry dbr:Order_of_vanishing dbr:Kummer_extension dbr:Springer-Verlag dbr:PARI/GP_computer_algebra_system dbr:S-units dbr:Analytic_class_number_formula dbr:Taylor_expansion dbr:Stark_regulator |
dbp:authorlink |
Harold Stark (en) |
dbp:last |
Stark (en) |
dbp:wikiPageUsesTemplate |
dbt:Authority_control dbt:Citation dbt:Reflist dbt:Harvs |
dbp:year |
1971 (xsd:integer) 1975 (xsd:integer) 1976 (xsd:integer) 1980 (xsd:integer) |
dct:subject |
dbc:Conjectures dbc:Zeta_and_L-functions dbc:Algebraic_number_theory dbc:Field_(mathematics) dbc:Unsolved_problems_in_number_theory |
rdf:type |
owl:Thing yago:WikicatConjectures yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Hypothesis105888929 yago:Idea105833840 yago:PsychologicalFeature100023100 yago:Speculation105891783 |
rdfs:comment |
数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja) In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of thi (en) |
rdfs:label |
スターク予想 (ja) Stark conjectures (en) |
owl:sameAs |
freebase:Stark conjectures wikidata:Stark conjectures dbpedia-ja:Stark conjectures https://global.dbpedia.org/id/4vEs9 yago-res:Stark conjectures |
prov:wasDerivedFrom |
wikipedia-en:Stark_conjectures?oldid=1045234031&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Stark_conjectures |
is dbo:knownFor of |
dbr:Harold_Stark |
is dbo:wikiPageRedirects of |
dbr:Stark_units dbr:Rubin-Stark_conjecture dbr:Stark's_conjecture dbr:Stark's_conjectures dbr:Stark_conjecture |
is dbo:wikiPageWikiLink of |
dbr:Samit_Dasgupta dbr:Cristian_Dumitru_Popescu dbr:Harold_Stark dbr:Stark_units dbr:Karl_Rubin dbr:List_of_unsolved_problems_in_mathematics dbr:Rubin-Stark_conjecture dbr:Stark's_conjecture dbr:Stark's_conjectures dbr:Stark_conjecture |
is dbp:knownFor of |
dbr:Harold_Stark |
is foaf:primaryTopic of |
wikipedia-en:Stark_conjectures |