Stark conjectures (original) (raw)

Property Value
dbo:abstract In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of this refined conjecture to higher orders of vanishing. (en) 数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja)
dbo:wikiPageExternalLink http://www.mathematics.jhu.edu/stark/ https://www.springer.com/birkhauser/mathematics/book/978-0-8176-3188-8 http://www.math.umass.edu/~dhayes/lecs.html https://arxiv.org/abs/2010.00657 https://web.archive.org/web/20120204044231/http:/www.math.umass.edu/~dhayes/lecs.html https://web.archive.org/web/20120426023029/http:/www.mathematics.jhu.edu/stark/ http://www.numdam.org/item%3Fid=AIF_1996__46_1_33_0
dbo:wikiPageID 5685631 (xsd:integer)
dbo:wikiPageLength 8361 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1045234031 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quadratic_field dbr:Algebraic_number_field dbr:Annales_de_l'Institut_Fourier dbr:Regulator_(mathematics) dbr:Dedekind_zeta_function dbc:Conjectures dbr:Complex_analysis dbr:Conjecture dbr:Cristian_Dumitru_Popescu dbr:Function_field_of_an_algebraic_variety dbr:Galois_extension dbr:Alain_Connes dbr:Algebraic_number dbr:American_Mathematical_Society dbc:Zeta_and_L-functions dbr:Number_theory dbr:Hilbert's_twelfth_problem dbr:Hilbert_class_field dbr:Abelian_extension dbc:Algebraic_number_theory dbc:Field_(mathematics) dbc:Unsolved_problems_in_number_theory dbr:Advances_in_Mathematics dbr:Coefficient dbr:Artin_L-function dbr:Class_field_theory dbr:Rational_number dbr:Noncommutative_geometry dbr:Order_of_vanishing dbr:Kummer_extension dbr:Springer-Verlag dbr:PARI/GP_computer_algebra_system dbr:S-units dbr:Analytic_class_number_formula dbr:Taylor_expansion dbr:Stark_regulator
dbp:authorlink Harold Stark (en)
dbp:last Stark (en)
dbp:wikiPageUsesTemplate dbt:Authority_control dbt:Citation dbt:Reflist dbt:Harvs
dbp:year 1971 (xsd:integer) 1975 (xsd:integer) 1976 (xsd:integer) 1980 (xsd:integer)
dct:subject dbc:Conjectures dbc:Zeta_and_L-functions dbc:Algebraic_number_theory dbc:Field_(mathematics) dbc:Unsolved_problems_in_number_theory
rdf:type owl:Thing yago:WikicatConjectures yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Hypothesis105888929 yago:Idea105833840 yago:PsychologicalFeature100023100 yago:Speculation105891783
rdfs:comment 数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja) In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of thi (en)
rdfs:label スターク予想 (ja) Stark conjectures (en)
owl:sameAs freebase:Stark conjectures wikidata:Stark conjectures dbpedia-ja:Stark conjectures https://global.dbpedia.org/id/4vEs9 yago-res:Stark conjectures
prov:wasDerivedFrom wikipedia-en:Stark_conjectures?oldid=1045234031&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Stark_conjectures
is dbo:knownFor of dbr:Harold_Stark
is dbo:wikiPageRedirects of dbr:Stark_units dbr:Rubin-Stark_conjecture dbr:Stark's_conjecture dbr:Stark's_conjectures dbr:Stark_conjecture
is dbo:wikiPageWikiLink of dbr:Samit_Dasgupta dbr:Cristian_Dumitru_Popescu dbr:Harold_Stark dbr:Stark_units dbr:Karl_Rubin dbr:List_of_unsolved_problems_in_mathematics dbr:Rubin-Stark_conjecture dbr:Stark's_conjecture dbr:Stark's_conjectures dbr:Stark_conjecture
is dbp:knownFor of dbr:Harold_Stark
is foaf:primaryTopic of wikipedia-en:Stark_conjectures