Sums of powers (original) (raw)
في الرياضيات والإحصاء, مجاميع القوى تتواجد في سياقات عدة: * تظهر في سياقات عديدة. * صيغة فاولابر تعبر عن كحدودية في n. * مبرهنة المثلث القائم لفيرما تنص على عدم وجود حل بأعداد صحيحة موجبة للعلاقة * مبرهنة فيرما الأخيرة تنص أن هو محال في أعداد صحيحة موجبة k>2. * حدسية مجموع القوى لأويلر (disproved) تهتم بحالات يكون فيها مجموع الأعداد الصحيحة n ، كل منها عدد صحيح من الدرجة k يقابل عدد آخر من الدرجة k. * معادلة جاكوبي ومادن في أعداد صحيحة. * معضلة ويرينغ تتساءل ما إذا كان لأي عدد طبيعي k يوجد عدد صحيح مقابل s بحيث يكون كل عدد طبيعي عبارة عن مجموع على الأغلب قوى الأعداد الطبيعية من الدرجة k. * القوى المتعاقبة من النسبة الذهبية φ تخضع لتكرار فيبوناكسي: * متطابقات نيوتن تعبر عن مجموع القوى من الدرجة k لجميع جذور كثيرة حدود بدلالة معاملات كثيرة الحدود.
Property | Value |
---|---|
dbo:abstract | في الرياضيات والإحصاء, مجاميع القوى تتواجد في سياقات عدة: * تظهر في سياقات عديدة. * صيغة فاولابر تعبر عن كحدودية في n. * مبرهنة المثلث القائم لفيرما تنص على عدم وجود حل بأعداد صحيحة موجبة للعلاقة * مبرهنة فيرما الأخيرة تنص أن هو محال في أعداد صحيحة موجبة k>2. * حدسية مجموع القوى لأويلر (disproved) تهتم بحالات يكون فيها مجموع الأعداد الصحيحة n ، كل منها عدد صحيح من الدرجة k يقابل عدد آخر من الدرجة k. * معادلة جاكوبي ومادن في أعداد صحيحة. * معضلة ويرينغ تتساءل ما إذا كان لأي عدد طبيعي k يوجد عدد صحيح مقابل s بحيث يكون كل عدد طبيعي عبارة عن مجموع على الأغلب قوى الأعداد الطبيعية من الدرجة k. * القوى المتعاقبة من النسبة الذهبية φ تخضع لتكرار فيبوناكسي: * متطابقات نيوتن تعبر عن مجموع القوى من الدرجة k لجميع جذور كثيرة حدود بدلالة معاملات كثيرة الحدود. (ar) In mathematics and statistics, sums of powers occur in a number of contexts: * Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. * Faulhaber's formula expresses as a polynomial in n, or alternatively in term of a Bernoulli polynomial. * Fermat's right triangle theorem states that there is no solution in positive integers for and . * Fermat's Last Theorem states that is impossible in positive integers with k>2. * The equation of a superellipse is . The squircle is the case . * Euler's sum of powers conjecture (disproved) concerns situations in which the sum of n integers, each a kth power of an integer, equals another kth power. * The Fermat-Catalan conjecture asks whether there are an infinitude of examples in which the sum of two coprime integers, each a power of an integer, with the powers not necessarily equal, can equal another integer that is a power, with the reciprocals of the three powers summing to less than 1. * Beal's conjecture concerns the question of whether the sum of two coprime integers, each a power greater than 2 of an integer, with the powers not necessarily equal, can equal another integer that is a power greater than 2. * The Jacobi–Madden equation is in integers. * The Prouhet–Tarry–Escott problem considers sums of two sets of kth powers of integers that are equal for multiple values of k. * A taxicab number is the smallest integer that can be expressed as a sum of two positive third powers in n distinct ways. * The Riemann zeta function is the sum of the reciprocals of the positive integers each raised to the power s, where s is a complex number whose real part is greater than 1. * The Lander, Parkin, and Selfridge conjecture concerns the minimal value of m + n in * Waring's problem asks whether for every natural number k there exists an associated positive integer s such that every natural number is the sum of at most s kth powers of natural numbers. * The successive powers of the golden ratio φ obey the Fibonacci recurrence: * Newton's identities express the sum of the kth powers of all the roots of a polynomial in terms of the coefficients in the polynomial. * The sum of cubes of numbers in arithmetic progression is sometimes another cube. * The Fermat cubic, in which the sum of three cubes equals another cube, has a general solution. * The power sum symmetric polynomial is a building block for symmetric polynomials. * The sum of the reciprocals of all perfect powers including duplicates (but not including 1) equals 1. * The Erdős–Moser equation, where and are positive integers, is conjectured to have no solutions other than 11 + 21 = 31. * The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers can be expressed in this form. * The sums of powers Sm(z, n) = zm + (z+1)m + ... + (z+n−1)m is related to the Bernoulli polynomials Bm(z) by (∂n−∂z) Sm(z, n) = Bm(z) and (∂2λ−∂Z) S2k+1(z, n) = Ŝ′k+1(Z) where Z = z(z−1), λ = S1(z, n), Ŝk+1(Z) ≡ S2k+1(0, z). * The sum of the terms in the geometric series is (en) |
dbo:wikiPageExternalLink | https://www.youtube.com/watch%3Fv=NZaEQFn1LGY&ab_channel=Math%2CPhysics%2CEngineering |
dbo:wikiPageID | 12537045 (xsd:integer) |
dbo:wikiPageLength | 5338 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1124646514 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Bernoulli_polynomials dbr:Riemann_zeta_function dbr:Jacobi's_four-square_theorem dbr:Jacobi–Madden_equation dbr:Analysis_of_variance dbr:Mathematics dbr:Geometric_series dbr:Geometry dbr:Golden_ratio dbr:Erdős–Moser_equation dbr:Newton's_identities dbr:Statistics dbr:Faulhaber's_formula dbr:Perfect_power dbr:Power_sum_symmetric_polynomial dbr:Lander,_Parkin,_and_Selfridge_conjecture dbr:Waring's_problem dbc:Number_theory dbr:Cube_(algebra) dbr:Euler's_sum_of_powers_conjecture dbr:Fermat's_Last_Theorem dbr:Fermat's_right_triangle_theorem dbc:Squares_in_number_theory dbr:Number_theory dbr:Beal's_conjecture dbr:Legendre's_three-square_theorem dbr:Prouhet–Tarry–Escott_problem dbr:Superellipse dbr:Pythagorean_theorem dbr:Fermat-Catalan_conjecture dbr:Taxicab_number dbr:Diophantine_equation dbr:Squircle dbr:Fermat_cubic dbc:Mathematics-related_lists dbr:YouTube dbr:Sum_of_squares_(disambiguation) dbr:Sums_of_three_cubes dbr:Sum_of_squares dbr:Sum_of_reciprocals |
dbp:wikiPageUsesTemplate | dbt:Cite_journal dbt:Cn dbt:Reflist |
dct:subject | dbc:Number_theory dbc:Squares_in_number_theory dbc:Mathematics-related_lists |
rdfs:comment | في الرياضيات والإحصاء, مجاميع القوى تتواجد في سياقات عدة: * تظهر في سياقات عديدة. * صيغة فاولابر تعبر عن كحدودية في n. * مبرهنة المثلث القائم لفيرما تنص على عدم وجود حل بأعداد صحيحة موجبة للعلاقة * مبرهنة فيرما الأخيرة تنص أن هو محال في أعداد صحيحة موجبة k>2. * حدسية مجموع القوى لأويلر (disproved) تهتم بحالات يكون فيها مجموع الأعداد الصحيحة n ، كل منها عدد صحيح من الدرجة k يقابل عدد آخر من الدرجة k. * معادلة جاكوبي ومادن في أعداد صحيحة. * معضلة ويرينغ تتساءل ما إذا كان لأي عدد طبيعي k يوجد عدد صحيح مقابل s بحيث يكون كل عدد طبيعي عبارة عن مجموع على الأغلب قوى الأعداد الطبيعية من الدرجة k. * القوى المتعاقبة من النسبة الذهبية φ تخضع لتكرار فيبوناكسي: * متطابقات نيوتن تعبر عن مجموع القوى من الدرجة k لجميع جذور كثيرة حدود بدلالة معاملات كثيرة الحدود. (ar) In mathematics and statistics, sums of powers occur in a number of contexts: * Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. * Faulhaber's formula expresses as a polynomial in n, or alternatively in term of a Bernoulli polynomial. * Fermat's right triangle theorem states that there is no solution in positive integers for and . * Fermat's Last Theorem states that is impossible in positive integers with k>2. * The equation of a superellipse is . The squircle is the case . * Euler's sum of powers conjecture (disproved) concerns s (en) |
rdfs:label | مجموع القوى (ar) Sums of powers (en) 幂和 (zh) |
owl:sameAs | freebase:Sums of powers wikidata:Sums of powers dbpedia-ar:Sums of powers dbpedia-zh:Sums of powers https://global.dbpedia.org/id/W21q |
prov:wasDerivedFrom | wikipedia-en:Sums_of_powers?oldid=1124646514&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Sums_of_powers |
is dbo:wikiPageRedirects of | dbr:Power_Sum dbr:Sum_of_powers dbr:Sums_of_exponents dbr:Power_Sums dbr:Power_sum dbr:Power_sums |
is dbo:wikiPageWikiLink of | dbr:Beal_conjecture dbr:Bernoulli_number dbr:List_of_sums_of_reciprocals dbr:Jacobi–Madden_equation dbr:Johann_Faulhaber dbr:Lander,_Parkin,_and_Selfridge_conjecture dbr:Euler's_sum_of_powers_conjecture dbr:Fermat's_Last_Theorem dbr:Fermat–Catalan_conjecture dbr:Prouhet–Tarry–Escott_problem dbr:Heronian_tetrahedron dbr:Taxicab_number dbr:Klaus_Roth dbr:Sums_of_three_cubes dbr:Polynomials_calculating_sums_of_powers_of_arithmetic_progressions dbr:Vinogradov's_mean-value_theorem dbr:Sum_of_squares dbr:Power_Sum dbr:Sum_of_powers dbr:Sums_of_exponents dbr:Power_Sums dbr:Power_sum dbr:Power_sums |
is foaf:primaryTopic of | wikipedia-en:Sums_of_powers |