Temperature paradox (original) (raw)

About DBpedia

The Temperature Paradox or Partee's Paradox is a classic puzzle in formal semantics and philosophical logic. Formulated by Barbara Partee in the 1970s, it consists of the following argument, which speakers of English judge as wildly invalid. 1. * The temperature is ninety. 2. * The temperature is rising. 3. * Therefore, ninety is rising. (invalid conclusion) 1. * t=90 2. * R(t) 3. * R(90) (valid conclusion in this formalization) 1. * extension(t)=90 2. * R(intension(t)) 3. * R(90) (invalid conclusion)

Property Value
dbo:abstract The Temperature Paradox or Partee's Paradox is a classic puzzle in formal semantics and philosophical logic. Formulated by Barbara Partee in the 1970s, it consists of the following argument, which speakers of English judge as wildly invalid. 1. * The temperature is ninety. 2. * The temperature is rising. 3. * Therefore, ninety is rising. (invalid conclusion) Despite its obvious invalidity, this argument would be valid in most formalizations based on traditional extensional systems of logic. For instance, the following formalization in first order predicate logic would be valid via Leibniz's law: 1. * t=90 2. * R(t) 3. * R(90) (valid conclusion in this formalization) To correctly predict the invalidity of the argument without abandoning Leibniz's Law, a formalization must capture the fact that the first premise makes a claim about the temperature at a particular point in time, while the second makes an assertion about how it changes over time. One way of doing so, proposed by Richard Montague, is to adopt an intensional logic for natural language, thus allowing "the temperature" to denote its extension in the first premise and its intension in the second. 1. * extension(t)=90 2. * R(intension(t)) 3. * R(90) (invalid conclusion) Thus, Montague took the paradox as evidence that nominals denote individual concepts, defined as functions from a world-time pair to an individual. Later analyses build on this general idea, but differ in the specifics of the formalization. (en)
dbo:wikiPageID 68292003 (xsd:integer)
dbo:wikiPageLength 3221 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1118262138 (xsd:integer)
dbo:wikiPageWikiLink dbr:Richard_Montague dbr:Validity_(logic) dbr:Intension dbr:Intensional_logic dbr:Possible_world dbr:English_language dbr:Identity_of_indiscernibles dbr:Barbara_Partee dbc:Philosophical_logic dbc:Formal_semantics_(natural_language) dbc:Non-classical_logic dbr:Formal_semantics_(natural_language) dbc:Predicate_logic dbr:Extension_(semantics) dbr:Extensionality dbr:Philosophical_logic dbr:First_order_predicate_logic
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description dbt:Cite_SEP dbt:Semantics-stub dbt:Formal_semantics
dct:subject dbc:Philosophical_logic dbc:Formal_semantics_(natural_language) dbc:Non-classical_logic dbc:Predicate_logic
rdfs:comment The Temperature Paradox or Partee's Paradox is a classic puzzle in formal semantics and philosophical logic. Formulated by Barbara Partee in the 1970s, it consists of the following argument, which speakers of English judge as wildly invalid. 1. * The temperature is ninety. 2. * The temperature is rising. 3. * Therefore, ninety is rising. (invalid conclusion) 1. * t=90 2. * R(t) 3. * R(90) (valid conclusion in this formalization) 1. * extension(t)=90 2. * R(intension(t)) 3. * R(90) (invalid conclusion) (en)
rdfs:label Paradosso della temperatura (it) Temperature paradox (en)
owl:sameAs wikidata:Temperature paradox dbpedia-it:Temperature paradox https://global.dbpedia.org/id/G2P3E
prov:wasDerivedFrom wikipedia-en:Temperature_paradox?oldid=1118262138&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Temperature_paradox
is dbo:wikiPageWikiLink of dbr:De_dicto_and_de_re dbr:Intension dbr:Intensional_logic dbr:Barbara_Partee dbr:Sense_and_reference
is foaf:primaryTopic of wikipedia-en:Temperature_paradox