Two-graph (original) (raw)
In mathematics, a two-graph is a set of (unordered) triples chosen from a finite vertex set X, such that every (unordered) quadruple from X contains an even number of triples of the two-graph. A regular two-graph has the property that every pair of vertices lies in the same number of triples of the two-graph. Two-graphs have been studied because of their connection with equiangular lines and, for regular two-graphs, strongly regular graphs, and also finite groups because many regular two-graphs have interesting automorphism groups.
Property | Value |
---|---|
dbo:abstract | In mathematics, a two-graph is a set of (unordered) triples chosen from a finite vertex set X, such that every (unordered) quadruple from X contains an even number of triples of the two-graph. A regular two-graph has the property that every pair of vertices lies in the same number of triples of the two-graph. Two-graphs have been studied because of their connection with equiangular lines and, for regular two-graphs, strongly regular graphs, and also finite groups because many regular two-graphs have interesting automorphism groups. A two-graph is not a graph and should not be confused with other objects called 2-graphs in graph theory, such as 2-regular graphs. (en) В математике два-граф это (неупорядоченное) множество троек, выбранных из конечного множества вершин X таким образом, что любая (неупорядоченная) четвёрка из X содержит чётное число выбранных троек два-графа. В регулярном (однородном) два-графе любая пара вершин лежит в одном и том же числе троек два-графа. Два-графы изучаются ввиду их связи с равноугольными прямыми, связи регулярных два-графов с сильно регулярными графами, а также ввиду связи регулярных два-графов с конечными группами, поскольку многие из этих графов имеют интересные группы автоморфизмов. Два-графы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2». Два-графы были введены Хигманом (G. Higman) как естественные объекты, возникающие при работе с некоторыми простыми группами. С тех пор их изучали интенсивно Зайдель, Тэйлор и другие при изучении множеств равноугольных прямых, сильно регулярных графов и других объектов. (ru) У математиці два-граф це (невпорядкована) множина трійок, вибраних зі скінченної множини вершин X таким чином, що будь-яка (невпорядкована) четвірка з містить парне число вибраних трійок два-графа. У регулярному (однорідному) два-графі будь-яка пара вершин лежить у тому самому числі трійок два-графа. Два-графи вивчають через їх зв'язок з рівнокутними прямими, зв'язок регулярних два-графів із сильно регулярними графами, а також через зв'язок регулярних два-графів зі скінченними групами, оскільки багато із цих графів мають цікаві групи автоморфізмів. Два-графи не є графами, і їх не слід плутати з іншими об'єктами, які називаються 2-графами в теорії графів, зокрема, з 2-регулярними графами. Для їх розрізнення використовують слово «два», а не цифру «2». Два-графи увів Хіґман як природні об'єкти, що виникають під час роботи з деякими простими групами. Відтоді їх інтенсивно вивчали Зайдель, Тейлор та інші, розглядаючи множини рівнокутних прямих, сильно регулярних графів та інших об'єктів. (uk) |
dbo:thumbnail | wiki-commons:Special:FilePath/Xyswitch.svg?width=300 |
dbo:wikiPageID | 2705947 (xsd:integer) |
dbo:wikiPageLength | 8165 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1106927384 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Regular_graph dbr:Signed_graph dbc:Extensions_and_generalizations_of_graphs dbr:Mathematics dbr:Norm_(mathematics) dbr:Symmetric_matrix dbr:Eigenvalues_and_eigenvectors dbr:Equiangular_lines dbr:Chris_Godsil dbc:Algebraic_graph_theory dbr:Euclidean_space dbr:Gordon_Royle dbr:Gram_matrix dbr:Graph_theory dbc:Families_of_sets dbr:Automorphism_group dbr:Strongly_regular_graph dbr:Finite_group dbr:Seidel_adjacency_matrix dbr:A._E._Brouwer dbr:File:Xyswitch.svg |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Harvtxt dbt:Main dbt:Nobreak dbt:Reflist |
dct:subject | dbc:Extensions_and_generalizations_of_graphs dbc:Algebraic_graph_theory dbc:Families_of_sets |
gold:hypernym | dbr:Set |
rdf:type | yago:WikicatSetFamilies yago:Abstraction100002137 yago:Family108078020 yago:Group100031264 yago:Organization108008335 yago:YagoLegalActor yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:SocialGroup107950920 yago:Unit108189659 |
rdfs:comment | In mathematics, a two-graph is a set of (unordered) triples chosen from a finite vertex set X, such that every (unordered) quadruple from X contains an even number of triples of the two-graph. A regular two-graph has the property that every pair of vertices lies in the same number of triples of the two-graph. Two-graphs have been studied because of their connection with equiangular lines and, for regular two-graphs, strongly regular graphs, and also finite groups because many regular two-graphs have interesting automorphism groups. (en) У математиці два-граф це (невпорядкована) множина трійок, вибраних зі скінченної множини вершин X таким чином, що будь-яка (невпорядкована) четвірка з містить парне число вибраних трійок два-графа. У регулярному (однорідному) два-графі будь-яка пара вершин лежить у тому самому числі трійок два-графа. Два-графи вивчають через їх зв'язок з рівнокутними прямими, зв'язок регулярних два-графів із сильно регулярними графами, а також через зв'язок регулярних два-графів зі скінченними групами, оскільки багато із цих графів мають цікаві групи автоморфізмів. (uk) В математике два-граф это (неупорядоченное) множество троек, выбранных из конечного множества вершин X таким образом, что любая (неупорядоченная) четвёрка из X содержит чётное число выбранных троек два-графа. В регулярном (однородном) два-графе любая пара вершин лежит в одном и том же числе троек два-графа. Два-графы изучаются ввиду их связи с равноугольными прямыми, связи регулярных два-графов с сильно регулярными графами, а также ввиду связи регулярных два-графов с конечными группами, поскольку многие из этих графов имеют интересные группы автоморфизмов. (ru) |
rdfs:label | Два-граф (ru) Two-graph (en) Два-граф (uk) |
owl:sameAs | freebase:Two-graph yago-res:Two-graph wikidata:Two-graph dbpedia-ru:Two-graph dbpedia-uk:Two-graph https://global.dbpedia.org/id/4wqD6 |
prov:wasDerivedFrom | wikipedia-en:Two-graph?oldid=1106927384&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Xyswitch.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Two-graph |
is dbo:wikiPageWikiLink of | dbr:Equiangular_lines dbr:Line_graph dbr:2-graph dbr:Adjacency_matrix dbr:Chang_graphs dbr:Strongly_regular_graph dbr:Seidel_adjacency_matrix |
is foaf:primaryTopic of | wikipedia-en:Two-graph |