Woodbury matrix identity (original) (raw)
In matematica, particolarmente in algebra lineare, l'identità matriciale di Woodbury o matrix inversion lemma per matrici di aspetto n × n è data dalla seguente formula: In essa A e UCV sono matrici di aspetto n × n, mentre C è una matrice quadrata che può avere aspetto diverso r × r; conseguentemente U ha aspetto n × r e V aspetto r × n.
Property | Value |
---|---|
dbo:abstract | Die Woodbury-Matrix-Identität, benannt nach Max A. Woodbury, besagt, dass die Inverse einer Rang--Korrektur einer Matrix als eine Rang--Korrektur der Inversen ausgedrückt werden kann. Gängig sind auch die Bezeichnungen Sherman-Morrison-Woodbury-Formel oder nur Woodbury-Formel. Doch die Gleichung wurde schon vor Woodburys Bericht erwähnt. Die Woodbury-Gleichung lautet , wobei , , und Matrizen des korrekten Formats bezeichnen. Genauer ist eine -Matrix, eine -Matrix, eine -Matrix und eine -Matrix. Im Spezialfall und , wird die Gleichung auch Sherman-Morrison-Formel genannt. Wenn die Einheitsmatrix ist, wird die Matrix oft genannt. (de) In mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury, says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report. The Woodbury matrix identity is where A, U, C and V are conformable matrices: A is n×n, C is k×k, U is n×k, and V is k×n. This can be derived using blockwise matrix inversion. While the identity is primarily used on matrices, it holds in a general ring or in an Ab-category. (en) In matematica, particolarmente in algebra lineare, l'identità matriciale di Woodbury o matrix inversion lemma per matrici di aspetto n × n è data dalla seguente formula: In essa A e UCV sono matrici di aspetto n × n, mentre C è una matrice quadrata che può avere aspetto diverso r × r; conseguentemente U ha aspetto n × r e V aspetto r × n. (it) Матрична тотожність Вудбері де матриці A розміру n×n, U розміру n×k, C розміру k×k і V розміру k×n. Використовується для обернення блочної матриці. (uk) |
dbo:wikiPageExternalLink | http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/identity.html http://apps.nrbook.com/empanel/index.html%3Fpg=80 |
dbo:wikiPageID | 430493 (xsd:integer) |
dbo:wikiPageLength | 16169 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1122644336 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Numerical_linear_algebra dbr:Determinant dbr:Conformable_matrix dbr:Mathematics dbr:Matrix_(mathematics) dbr:Linear_algebra dbr:Singular_value_decomposition dbr:Moore–Penrose_inverse dbr:Matrix_determinant_lemma dbc:Matrices dbc:Matrix_theory dbr:Sherman–Morrison_formula dbr:Numerical_partial_differential_equations dbr:Kalman_filter dbr:Schur_complement dbr:Ring_(mathematics) dbr:Invertible_matrix dbr:Hua's_identity dbc:Lemmas_in_linear_algebra dbr:Moore–Penrose_pseudoinverse dbr:Positive_semidefinite_matrices dbr:Parametric_solution dbr:Ab-category dbr:Recursive_least_squares |
dbp:title | Woodbury formula (en) |
dbp:urlname | WoodburyFormula (en) |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:MathWorld dbt:Reflist dbt:Short_description dbt:Use_American_English dbt:Collapse_bottom dbt:Collapse_top |
dct:subject | dbc:Matrices dbc:Matrix_theory dbc:Lemmas_in_linear_algebra |
rdf:type | yago:WikicatLemmas yago:WikicatMatrices yago:Abstraction100002137 yago:Arrangement107938773 yago:Array107939382 yago:Communication100033020 yago:Group100031264 yago:Lemma106751833 yago:Matrix108267640 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 |
rdfs:comment | In matematica, particolarmente in algebra lineare, l'identità matriciale di Woodbury o matrix inversion lemma per matrici di aspetto n × n è data dalla seguente formula: In essa A e UCV sono matrici di aspetto n × n, mentre C è una matrice quadrata che può avere aspetto diverso r × r; conseguentemente U ha aspetto n × r e V aspetto r × n. (it) Матрична тотожність Вудбері де матриці A розміру n×n, U розміру n×k, C розміру k×k і V розміру k×n. Використовується для обернення блочної матриці. (uk) Die Woodbury-Matrix-Identität, benannt nach Max A. Woodbury, besagt, dass die Inverse einer Rang--Korrektur einer Matrix als eine Rang--Korrektur der Inversen ausgedrückt werden kann. Gängig sind auch die Bezeichnungen Sherman-Morrison-Woodbury-Formel oder nur Woodbury-Formel. Doch die Gleichung wurde schon vor Woodburys Bericht erwähnt. Die Woodbury-Gleichung lautet , wobei , , und Matrizen des korrekten Formats bezeichnen. Genauer ist eine -Matrix, eine -Matrix, eine -Matrix und eine -Matrix. (de) In mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury, says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report. The Woodbury matrix identity is While the identity is primarily used on matrices, it holds in a general ring or in an Ab-category. (en) |
rdfs:label | Woodbury-Matrix-Identität (de) Identità di Woodbury (it) Woodbury matrix identity (en) Матрична тотожність Вудбурі (uk) |
owl:sameAs | freebase:Woodbury matrix identity yago-res:Woodbury matrix identity wikidata:Woodbury matrix identity dbpedia-de:Woodbury matrix identity dbpedia-he:Woodbury matrix identity dbpedia-it:Woodbury matrix identity dbpedia-uk:Woodbury matrix identity dbpedia-vi:Woodbury matrix identity https://global.dbpedia.org/id/Y1FN |
prov:wasDerivedFrom | wikipedia-en:Woodbury_matrix_identity?oldid=1122644336&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Woodbury_matrix_identity |
is dbo:wikiPageDisambiguates of | dbr:Woodbury |
is dbo:wikiPageRedirects of | dbr:Binomial_inverse_theorem dbr:Max_A._Woodbury dbr:Capacitance_matrix dbr:Woodbury's_identity dbr:Woodbury_Formula dbr:Woodbury_formula dbr:Sherman-Morrison-Woodbury_formula dbr:Matrix_Inversion_Lemma dbr:Matrix_inversion_lemma dbr:Smw_identity dbr:Sherman–Morrison–Woodbury_formula |
is dbo:wikiPageWikiLink of | dbr:List_of_lemmas dbr:List_of_mathematical_identities dbr:Weinstein–Aronszajn_identity dbr:Low-rank_matrix_approximations dbr:Matrix_determinant_lemma dbr:Sherman–Morrison_formula dbr:Binomial_inverse_theorem dbr:Schur_complement dbr:Recursive_least_squares_filter dbr:Invertible_matrix dbr:Max_A._Woodbury dbr:Woodbury dbr:Redheffer_star_product dbr:Outline_of_linear_algebra dbr:Capacitance_matrix dbr:Woodbury's_identity dbr:Woodbury_Formula dbr:Woodbury_formula dbr:Sherman-Morrison-Woodbury_formula dbr:Matrix_Inversion_Lemma dbr:Matrix_inversion_lemma dbr:Smw_identity dbr:Sherman–Morrison–Woodbury_formula |
is foaf:primaryTopic of | wikipedia-en:Woodbury_matrix_identity |