A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export (original) (raw)
References
Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene367, 17–37 (2006) ArticleCAS Google Scholar
Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci.36, 19–29 (2010) Article Google Scholar
Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J.18, 4332–4347 (1999) ArticleCAS Google Scholar
Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J.18, 5778–5788 (1999) ArticleCAS Google Scholar
Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J.17, 2663–2676 (1998) ArticleCAS Google Scholar
Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell20, 645–651 (2005) ArticleCAS Google Scholar
Tran, E. J., Zhou, Y., Corbett, A. H. & Wente, S. R. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell28, 850–859 (2007) ArticleCAS Google Scholar
Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell16, 749–760 (2004) ArticleCAS Google Scholar
von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Struct. Mol. Biol.16, 247–254 (2009) ArticleCAS Google Scholar
Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biol.8, 668–676 (2006) ArticleCAS Google Scholar
Alcázar-Roman, A. R., Tran, E. J., Guo, S. & Wente, S. R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature Cell Biol.8, 711–716 (2006) Article Google Scholar
Dossani, Z. Y., Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. Proc. Natl Acad. Sci. USA106, 16251–16256 (2009) ArticleADSCAS Google Scholar
Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics24, 2780–2781 (2008) ArticleCAS Google Scholar
Oberer, M., Marintchev, A. & Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev.19, 2212–2223 (2005) ArticleCAS Google Scholar
Korneeva, N. L., First, E. A., Benoit, C. A. & Rhoads, R. E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem.280, 1872–1881 (2005) ArticleCAS Google Scholar
Sonenberg, N. & Dever, T. E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol.13, 56–63 (2003) ArticleCAS Google Scholar
He, F., Brown, A. H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol.17, 1580–1594 (1997) ArticleCAS Google Scholar
Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nature Struct. Mol. Biol.15, 85–93 (2008) ArticleCAS Google Scholar
Kadlec, J., Guilligay, D., Ravelli, R. B. & Cusack, S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA12, 1817–1824 (2006) ArticleCAS Google Scholar
Alcázar-Román, A. R., Bolger, T. A. & Wente, S. R. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem.285, 16683–16692 (2010) Article Google Scholar
Schutz, P. et al. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein–protein interactions. Proc. Natl Acad. Sci. USA105, 9564–9569 (2008) ArticleADSCAS Google Scholar
Marintchev, A. et al. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell136, 447–460 (2009) ArticleCAS Google Scholar
Henn, A., Cao, W., Hackney, D. D. & De La Cruz, E. M. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J. Mol. Biol.377, 193–205 (2008) ArticleCAS Google Scholar
Henn, A. et al. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proc. Natl Acad. Sci. USA107, 4046–4050 (2010) ArticleADSCAS Google Scholar
Collins, R. et al. The DEXD/H-box RNA helicase DDX19 is regulated by an α-helical switch. J. Biol. Chem.284, 10296–10300 (2009) ArticleCAS Google Scholar
Napetschnig, J. et al. Structural and functional analysis of the interaction between the nucleoporin Nup214 and the DEAD-box helicase Ddx19. Proc. Natl Acad. Sci. USA106, 3089–3094 (2009) ArticleADSCAS Google Scholar
Büttner, K., Nehring, S. & Hopfner, K. P. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nature Struct. Mol. Biol.14, 647–652 (2007) Article Google Scholar
Fan, J. S. et al. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J. Mol. Biol.388, 1–10 (2009) Article Google Scholar
Kapust, R. B. & Waugh, D. S. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr. Purif.19, 312–318 (2000) ArticleCAS Google Scholar
MacDowell, A. A. et al. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source. J. Synchrotron Radiat.11, 447–455 (2004) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. in Methods in Enzymology (eds Carter, W. C. & Sweet, R. M.) 307–326 (Academic, 1997) Google Scholar
Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl Acad. Sci. USA101, 1537–1542 (2004) ArticleADSCAS Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res.35, W375–W383 (2007) ArticleADS Google Scholar
Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics22, 195–201 (2006) ArticleCAS Google Scholar
Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA98, 10037–10041 (2001) ArticleADSCAS Google Scholar
Flores, S. et al. The Database of Macromolecular Motions: new features added at the decade mark. Nucleic Acids Res.34, D296–D301 (2006) ArticleCAS Google Scholar
Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) Article Google Scholar
Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry37, 2180–2193 (1998) ArticleCAS Google Scholar