Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing (original) (raw)
Pandey, S., Kawai, T. & Akira, S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb. Perspect. Biol.7, a016246 (2014). PubMed Google Scholar
Broz, P. & Dixit, V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol.16, 407–420 (2016). CASPubMed Google Scholar
Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol.32, 48–53 (2015). CASPubMed Google Scholar
Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell54, 289–296 (2014). CASPubMed Google Scholar
Land, W.G. Innate Alloimmunity, Part 1: Innate Immunity and Host Defense (Pabst Science Publishers, 2011). Google Scholar
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science339, 786–791 (2013). CASPubMed Google Scholar
Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep.6, 421–430 (2014). CASPubMedPubMed Central Google Scholar
Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity39, 1019–1031 (2013). CASPubMed Google Scholar
Kranzusch, P.J., Lee, A.S., Berger, J.M. & Doudna, J.A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Reports3, 1362–1368 (2013). CASPubMed Google Scholar
Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell153, 1094–1107 (2013). CASPubMedPubMed Central Google Scholar
Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science339, 826–830 (2013). CASPubMed Google Scholar
Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell51, 226–235 (2013). CASPubMed Google Scholar
Diner, E.J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Reports3, 1355–1361 (2013). CASPubMed Google Scholar
Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature498, 380–384 (2013). CASPubMedPubMed Central Google Scholar
Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455, 674–678 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity29, 538–550 (2008). CASPubMed Google Scholar
Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA106, 20842–20846 (2009). CASPubMedPubMed Central Google Scholar
Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009). CASPubMedPubMed Central Google Scholar
Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe18, 157–168 (2015). CASPubMedPubMed Central Google Scholar
Tanaka, Y. & Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal.5, ra20 (2012). PubMedPubMed Central Google Scholar
Fitzgerald, K.A. et al. IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol.4, 491–496 (2003). CASPubMed Google Scholar
Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science300, 1148–1151 (2003). CASPubMed Google Scholar
Herzner, A.-M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol.16, 1025–1033 (2015). CASPubMedPubMed Central Google Scholar
Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity39, 482–495 (2013). CASPubMed Google Scholar
Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol.17, 369–378 (2016). CASPubMed Google Scholar
Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature472, 481–485 (2011). CASPubMedPubMed Central Google Scholar
Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol.194, 1545–1554 (2015). CASPubMed Google Scholar
Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138, 576–591 (2009). CASPubMedPubMed Central Google Scholar
Xia, T., Konno, H., Ahn, J. & Barber, G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep.14, 282–297 (2016). CASPubMed Google Scholar
Thomsen, M.K. et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology64, 746–759 (2016). CASPubMed Google Scholar
Berg, R.K. et al. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS One9, e84513 (2014). PubMedPubMed Central Google Scholar
Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol.10, 1043–1048 (2014). CASPubMedPubMed Central Google Scholar
Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature503, 530–534 (2013). CASPubMedPubMed Central Google Scholar
Gentili, M. et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science349, 1232–1236 (2015). CASPubMed Google Scholar
Bridgeman, A. et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science349, 1228–1232 (2015). CASPubMedPubMed Central Google Scholar
Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell154, 748–762 (2013). CASPubMedPubMed Central Google Scholar
Shu, C., Yi, G., Watts, T., Kao, C.C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol.19, 722–724 (2012). CASPubMedPubMed Central Google Scholar
Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol.19, 725–727 (2012). CASPubMed Google Scholar
Ouyang, S. et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity36, 1073–1086 (2012). CASPubMed Google Scholar
Tsuchiya, Y., Jounai, N., Takeshita, F., Ishii, K.J. & Mizuguchi, K. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine9, 87–96 (2016). PubMedPubMed Central Google Scholar
Shi, H., Wu, J., Chen, Z.J. & Chen, C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proc. Natl. Acad. Sci. USA112, 8947–8952 (2015). CASPubMedPubMed Central Google Scholar
Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol.190, 5216–5225 (2013). CASPubMed Google Scholar
Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K.P. & Hornung, V. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J.32, 1440–1450 (2013). CASPubMedPubMed Central Google Scholar
Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science347, aaa2630 (2015). PubMed Google Scholar
Konno, H., Konno, K. & Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell155, 688–698 (2013). CASPubMed Google Scholar
Zhang, J., Hu, M.M., Wang, Y.Y. & Shu, H.B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem.287, 28646–28655 (2012). CASPubMedPubMed Central Google Scholar
Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity33, 765–776 (2010). CASPubMed Google Scholar
Wang, Q. et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity41, 919–933 (2014). CASPubMed Google Scholar
Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity30, 397–407 (2009). CASPubMed Google Scholar
Wang, Y. et al. TRIM30a Is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog.11, e1005012 (2015). PubMedPubMed Central Google Scholar
Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451, 725–729 (2008). CASPubMed Google Scholar
Gray, E.E. et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity45, 255–266 (2016). CASPubMedPubMed Central Google Scholar
Yoh, S.M. et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell161, 1293–1305 (2015). CASPubMedPubMed Central Google Scholar
Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe15, 228–238 (2014). CASPubMedPubMed Central Google Scholar
Paijo, J. et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog.12, e1005546 (2016). PubMedPubMed Central Google Scholar
Lio, C.W. et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J. Virol.90, 7789–7797 (2016). CASPubMedPubMed Central Google Scholar
Zhang, G. et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl. Acad. Sci. USA113, E1034–E1043 (2016). CASPubMedPubMed Central Google Scholar
Wu, J.J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe18, 333–344 (2015). CASPubMedPubMed Central Google Scholar
Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc. Natl. Acad. Sci. USA112, E4306–E4315 (2015). CASPubMedPubMed Central Google Scholar
Li, X.D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science341, 1390–1394 (2013). CASPubMed Google Scholar
Schoggins, J.W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature505, 691–695 (2014). CASPubMed Google Scholar
Holm, C.K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol.13, 737–743 (2012). CASPubMedPubMed Central Google Scholar
Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature503, 402–405 (2013). CASPubMedPubMed Central Google Scholar
Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity39, 1132–1142 (2013). CASPubMed Google Scholar
Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science341, 903–906 (2013). CASPubMed Google Scholar
Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science346, 1486–1492 (2014). CASPubMedPubMed Central Google Scholar
Portnoy, D.A., Auerbuch, V. & Glomski, I.J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol.158, 409–414 (2002). CASPubMedPubMed Central Google Scholar
Watson, R.O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe17, 811–819 (2015). CASPubMedPubMed Central Google Scholar
Wassermann, R. et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe17, 799–810 (2015). CASPubMed Google Scholar
Collins, A.C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe17, 820–828 (2015). CASPubMedPubMed Central Google Scholar
Hansen, K. et al. Listeria monocytogenes induces IFNb expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J.33, 1654–1666 (2014). CASPubMedPubMed Central Google Scholar
Storek, K.M., Gertsvolf, N.A., Ohlson, M.B. & Monack, D.M. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol.194, 3236–3245 (2015). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-b during Chlamydia trachomatis infection. J. Immunol.193, 2394–2404 (2014). CASPubMed Google Scholar
Andrade, W.A. et al. Type I interferon induction by Neisseria gonorrhoeae: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Rep.15, 2438–2448 (2016). CASPubMedPubMed Central Google Scholar
Andrade, W.A. et al. Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe20, 49–59 (2016). CASPubMedPubMed Central Google Scholar
Christensen, M.H. et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J.35, 1385–1399 (2016). CASPubMedPubMed Central Google Scholar
Lau, L., Gray, E.E., Brunette, R.L. & Stetson, D.B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science350, 568–571 (2015). CASPubMed Google Scholar
Crow, Y.J. Type I interferonopathies: mendelian type I interferon up-regulation. Curr. Opin. Immunol.32, 7–12 (2015). CASPubMed Google Scholar
Gray, E.E., Treuting, P.M., Woodward, J.J. & Stetson, D.B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J. Immunol.195, 1939–1943 (2015). CASPubMed Google Scholar
Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA112, E5699–E5705 (2015). CASPubMedPubMed Central Google Scholar
Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity36, 120–131 (2012). CASPubMedPubMed Central Google Scholar
Pokatayev, V. et al. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J. Exp. Med.213, 329–336 (2016). CASPubMedPubMed Central Google Scholar
Mackenzie, K.J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J.35, 831–844 (2016). CASPubMedPubMed Central Google Scholar
Lindahl, T., Barnes, D.E., Yang, Y.G. & Robins, P. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem. Soc. Trans.37, 535–538 (2009). CASPubMed Google Scholar
Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell131, 873–886 (2007). CASPubMed Google Scholar
Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science292, 1546–1549 (2001). CASPubMed Google Scholar
Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol.6, 49–56 (2005). CASPubMed Google Scholar
Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202, 1333–1339 (2005). CASPubMedPubMed Central Google Scholar
Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol.6, 836–848 (2006). CASPubMed Google Scholar
Fuertes, M.B., Woo, S.R., Burnett, B., Fu, Y.X. & Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. Trends Immunol.34, 67–73 (2013). CASPubMed Google Scholar
Corrales, L. & Gajewski, T.F. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine77, 245–247 (2016). PubMed Google Scholar
Woo, S.R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity41, 830–842 (2014). CASPubMedPubMed Central Google Scholar
Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity41, 843–852 (2014). CASPubMedPubMed Central Google Scholar
Liu, X. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med.21, 1209–1215 (2015). CASPubMedPubMed Central Google Scholar
Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA112, 15408–15413 (2015). CASPubMedPubMed Central Google Scholar
Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep.11, 1018–1030 (2015). CASPubMedPubMed Central Google Scholar
Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol.191, 3509–3513 (2013). CASPubMed Google Scholar
Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res.76, 2076–2081 (2016). CASPubMedPubMed Central Google Scholar
Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature533, 493–498 (2016). CASPubMedPubMed Central Google Scholar