Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis (original) (raw)
References
Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van-Den-Berg CL (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23:596–604 ArticlePubMedCAS Google Scholar
Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450 ArticlePubMedCAS Google Scholar
Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC (2004) TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 157:247–270 PubMed Google Scholar
Kojima K, Konopleva M, McQueen T, O’brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108:993–1000 ArticlePubMedCAS Google Scholar
LeBras M, Rouy I, Brenner C (2006) The modulation of inter-organelle cross-talk to control apoptosis. Med Chem 2:1–12 ArticleCAS Google Scholar
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014 ArticlePubMedCAS Google Scholar
Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J et al (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275:38905–38911 ArticlePubMedCAS Google Scholar
Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP et al (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155 ArticlePubMedCAS Google Scholar
Zhang H, Shi X, Zhang QJ, Hampong M, Paddon H, Wahyuningsih D et al (2002) Nocodazole-induced p53-dependent c-Jun N-terminal kinase activation reduces apoptosis in human colon carcinoma HCT116 cells. J Biol Chem 277:43648–43658 ArticlePubMedCAS Google Scholar
Siddiqui IA, Zaman N, Aziz MH, Reagan-Shaw SR, Sarfaraz S, Adhami VM et al (2006) Inhibition of CWR22Rnu1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis 4:833–839 Google Scholar
Way TD, Lee HH, Kao MC, Lin JK (2004) Black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human breast cancer cells through tyrosine kinase suppression. Eur J Cancer 40:2165–2174 ArticlePubMedCAS Google Scholar
Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068 ArticlePubMedCAS Google Scholar
Bhattacharyya A, Choudhuri T, Pal S, Chattopadhyay S, Datta GK, Sa G et al (2003) Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis 24:75–80 ArticlePubMedCAS Google Scholar
Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20:7779–7786 ArticlePubMedCAS Google Scholar
Sa G, Murugesan G, Jaye M, Ivashchenko Y, Fox PL (1995) Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem 270:2360–2366 ArticlePubMedCAS Google Scholar
Calcabrini A, García-Martínez JM, González L, Tendero MJ, Ortuño MT, Crateri P et al (2006) Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis 27:1699–1712 ArticlePubMedCAS Google Scholar
Zhu X, Yu QS, Cutler RG, Culmsee CW, Holloway HW, Lahiri DK et al (2002) Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 45:5090–5097 ArticlePubMedCAS Google Scholar
Moore MA, Tajima K, Anh PH, Aydemir G, Basu PS, Bhurgri Y et al (2003) Grand challenges in global health and the practical prevention program? Asian focus on cancer prevention in females of the developing world. Asian Pac J Cancer Prev 4:153–165 PubMed Google Scholar
Kumar S, Walia V, Ray M, Elble RC (2007) p53 in breast cancer: mutation and countermeasures. Front Biosci 12:4168–4178 ArticlePubMedCAS Google Scholar
Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV (2003) p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J Biol Chem 278:15465–15468 ArticlePubMedCAS Google Scholar
Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741 ArticlePubMedCAS Google Scholar
Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 116:4077–4085 ArticlePubMedCAS Google Scholar
Godefroy N, Bouleau S, Gruel G, Renaud F, Rincheval V, Mignotte B et al (2004) Transcriptional repression by p53 promotes a Bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res 15:4480–4490 Article Google Scholar
Talos F, Petrenko O, Mena P, Moll UM (2005) Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res 65:9971–9981 ArticlePubMedCAS Google Scholar
Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW et al (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6:1241–1247 ArticlePubMedCAS Google Scholar
Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360 ArticlePubMedCAS Google Scholar
Hsu S, Lewis J, Singh B, Schoenlein P, Osaki T, Athar M et al (2003) Green tea polyphenol targets the mitochondria in tumor cells inducing caspase 3-dependent apoptosis. Anticancer Res 23:1533–1539 PubMedCAS Google Scholar
Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446 ArticlePubMedCAS Google Scholar
Ferguson HA, Marietta PM, Van-Den-Berg CL (2003) UV-induced apoptosis is mediated independent of caspase-9 in MCF-7 cells: a model for cytochrome c resistance. J Biol Chem 278:45793–45800 ArticlePubMedCAS Google Scholar
Lang-Rollin I, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ et al (2005) Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10:809–820 ArticlePubMedCAS Google Scholar
Nister M, Tang M, Zhang XQ, Yin C, Beeche M, Hu X et al (2005) p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 24:3563–3573 ArticlePubMedCAS Google Scholar