Towards quantum chemistry on a quantum computer (original) (raw)

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
    Article Google Scholar
  2. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
    Article CAS Google Scholar
  3. Head-Gordon, M. & Artacho, E. Chemistry on the computer. Physics Today 61(4), 58–63 (2008).
    Article Google Scholar
  4. Hung, L. & Carter, E. A. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163–170 (2009).
    Article CAS Google Scholar
  5. Chelikowsky, J. R. et al. Pseudopotentials on grids: Application to the electronic, optical, and vibrational properties of silicon nanocrystals. J. Comput. Theor. Nanosci. 6, 1247–1261 (2009).
    Article CAS Google Scholar
  6. Dreuw, A. & Head-Gordon, M. Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126, 4007–4016 (2004).
    Article CAS Google Scholar
  7. Levine, B. G. & Martinez, T. J. Isomerization through conical intersections. Ann. Rev. Phys. Chem. 58, 613–634 (2007).
    Article CAS Google Scholar
  8. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
    Article CAS Google Scholar
  9. Van Voorhis, T. & Head-Gordon, M. Benchmark variational coupled cluster doubles results. J. Chem. Phys. 113, 8873–8879 (2000).
    Article CAS Google Scholar
  10. Abrams, D. & Lloyd, S. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2586 (1997).
    Article CAS Google Scholar
  11. Kassal, I. Jordan, S. P., Love, P. J., Mohseni, M. & Aspuru-Guzik, A. Polynomial-time quantum algorithm for the simulation of chemical dynamics Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).
    Article CAS Google Scholar
  12. Zalka. C. Efficient simulation of quantum systems by quantum computers. Proc. R. Soc. Lond. A 454, 313–322 (1998).
    Article Google Scholar
  13. Kassal, I. & Aspuru-Guzik, A. Quantum algorithm for molecular properties and geometry optimization. J. Chem. Phys. (in the press); preprint at http://arxiv.org/abs/0908.1921 (2009).
  14. Lidar D. A. & Wang, H. Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999).
    Article CAS Google Scholar
  15. Aspuru-Guzik, A., Dutoi, A., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
    Article CAS Google Scholar
  16. Brown, K. R., Clark, R. J. & Chuang, I. L. Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006).
    Article Google Scholar
  17. Clark C. R., Metodi, T. S., Gasster, S. D. & Brown, K. R. Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model. Phys. Rev. A 79, 062314 (2009).
    Article Google Scholar
  18. Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R. & Cory, D. G. Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5384 (1999).
    Article CAS Google Scholar
  19. Yang, X., Wang, A. M., Xu, F. & Du. J. Experimental simulation of a pairing Hamiltonian on an NMR quantum computer. Chem. Phys. Lett. 422, 20–24 (2006).
    Article CAS Google Scholar
  20. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).
    Article CAS Google Scholar
  21. Gerritsma, R. et al. Quantum simulation of the Dirac equation. Preprint at: http://arxiv.org/abs/0909.0674 (2009).
  22. Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).
    Article Google Scholar
  23. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate Nature 422, 408–411 (2003).
    Article CAS Google Scholar
  24. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).
    Article CAS Google Scholar
  25. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).
    Article CAS Google Scholar
  26. Plantenberg, H. J., de Groot, P. C., Harmans, C. J. P. M. & Mooij, J. E. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007).
    Article CAS Google Scholar
  27. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).
    Article CAS Google Scholar
  28. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
    Article CAS Google Scholar
  29. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).
    Article CAS Google Scholar
  30. Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor's Algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).
    Article CAS Google Scholar
  31. Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).
    Article CAS Google Scholar
  32. Kitaev, A. Quantum measurements and the Abelian Stabilizer Problem. Preprint at: http://arxiv.org/abs/quant-ph/9511026 (1995).
  33. Dobsicek, M., Johansson, G., Shumeiko, V. S. & Wendin, G. Arbitrary accuracy iterative phase estimation algorithm as a two qubit benchmark. Phys. Rev. A 76, 030306(R) (2007).
    Article Google Scholar
  34. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2001).
    Google Scholar
  35. Helgaker, T., Jorgensen, P. & Olsen, J. Modern Electronic Structure Theory (Wiley, 2000).
    Google Scholar
  36. Xiu-Mei, L., Jun, L. & Xian-Ping, S. Experimental realization of arbitrary accuracy iterative phase estimation algorithms on ensemble quantum computers. Chinese Phys. Lett. 24, 3316–3319 (2007).
    Article Google Scholar
  37. Braunstein, S. L. et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999).
    Article CAS Google Scholar
  38. Chiaverini J. et al. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997–1000 (2005).
    Article CAS Google Scholar
  39. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).
    Article Google Scholar
  40. Wu, L.-A., Byrd, M. S. & Lidar, D. A. Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002).
    Article Google Scholar
  41. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum adiabatic evolution algorithms with different paths. Science 292, 472–475 (2000).
    Article Google Scholar
  42. Grangier, P., Sanders, B. & Vuckovic, J. (eds) Special issue: Focus on single photons on demand New J. Phys. 6, (2004).
  43. Cheung, J., Migdal, A. & Rastello, M.-L. (eds) Special issue: Single-photon: detectors, applications, and measurement methods. J. Mod. Opt. 56, 2–3 (2009).
    Article Google Scholar
  44. Dür, W., Bremner, M. J. & Briegel, H. J. Quantum simulation of interacting high-dimensional systems: the influence of noise. Phys. Rev. A 78, 052325 (2008).
    Article Google Scholar
  45. Jané, E., Vidal, G., Dür, W., Zoller, P. & Cirac, J. I. Simulation of quantum dynamics with quantum optical systems. Quant. Inf. Comp. 3, 15–37 (2003).
    Google Scholar
  46. Hehre, W. J., Stewart, R. F. & Pople, J. A. Self-consistent molecular orbital methods I. Use of Gaussian expansions of slater type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).
    Article CAS Google Scholar
  47. Szabo, A. & Ostlund, N. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, 1996).
    Google Scholar
  48. Liao, Y. et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008).
    Article CAS Google Scholar

Download references