Alpha-synuclein and neurodegenerative diseases (original) (raw)
Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. Med.64, 146–148 (1907). Google Scholar
Alzheimer, A. Über eigenartige Krankheitsfälle des späteren Alters. Z. ges. Neurol. Psychiatr.4, 356–385 (1911). Article Google Scholar
Lewy, F. in Handbuch der Neurologie Vol. 3 (eds Lewandowski, M. & Abelsdorff, G.) 920–933 (Springer Verlag, Berlin, 1912).The first description of the inclusions that define Parkinson's disease at a neuropathological level. Google Scholar
Kidd, M. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature197, 192–193 (1963). ArticleCASPubMed Google Scholar
Duffy, P. E. & Tennyson, V. M. Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson's disease. J. Neuropathol. Exp. Neurol.24, 398–414 (1965).Using electron microscopy, Lewy bodies are shown to contain abnormal filaments. Article Google Scholar
Rewcastle, N. B. & Ball, M. J. Electron microscopic structure of the 'inclusion bodies' in Pick's disease. Neurology18, 1205–1213 (1968). ArticleCASPubMed Google Scholar
Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science276, 2045–2047 (1997).A missense mutation in the α-synuclein gene (A53T) causes early-onset familial Parkinson's disease in the Contursi kindred. The first known genetic cause of Parkinson's disease. ArticleCASPubMed Google Scholar
Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature388, 839–840 (1997).The first description of the presence of α-synuclein in Lewy bodies and Lewy neurites of idiopathic Parkinson's disease and dementia with Lewy bodies. ArticleCASPubMed Google Scholar
Clayton, D. F. & George, J. M. Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res.58, 120–129 (1999). ArticleCASPubMed Google Scholar
Maroteaux, L., Campanelli, J. T. & Scheller, R. H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic terminal. J. Neurosci.8, 2804–2815 (1988). ArticleCASPubMedPubMed Central Google Scholar
Tobe, T. et al. Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein. J. Neurochem.59, 1624–1629 (1992). ArticleCASPubMed Google Scholar
Uéda, K. et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA90, 11282–11286 (1993). ArticlePubMedPubMed Central Google Scholar
Bayer, T. A. et al. α-synuclein accumulates in Lewy bodies in Parkinson's disease and dementia with Lewy bodies but not in Alzheimer's disease β-amyloid plaque cores. Neurosci. Lett.266, 213–216 (1999). ArticleCASPubMed Google Scholar
Jakes, R., Spillantini, M. G. & Goedert, M. Identification of two distinct synucleins from human brain. FEBS Lett.345, 27–32 (1994). ArticleCASPubMed Google Scholar
Ji, H. et al. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res.57, 759–764 (1997). CASPubMed Google Scholar
Buchman, V. L. et al. Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J. Neurosci.18, 9335–9341 (1998). ArticleCASPubMedPubMed Central Google Scholar
Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998). ArticleCASPubMed Google Scholar
Jensen, P. H., Nielsen, M. H., Jakes, R., Dotti, C. G. & Goedert, M. Binding of α-synuclein to rat brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem. 273, 26292–26294 (1998). ArticleCASPubMed Google Scholar
McLean, P. J., Kawamata, H., Ribich, S. & Hyman, B. T. Membrane association and protein conformation of α-synuclein in intact neurons. J. Biol. Chem. 275, 8812–8816 (2000). ArticleCASPubMed Google Scholar
Jo, E., McLaurin, J. A., Yip, C. M., St George-Hyslop, P. H. & Fraser, P. E. α-synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328–34334 (2000). ArticleCASPubMed Google Scholar
Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Interaction of human α-synuclein and Parkinson's disease variants with phospholipids. J. Biol. Chem. 275, 34393–34398 (2000). ArticleCASPubMed Google Scholar
Eliezer, D., Kutluay, E., Bussell, R. & Browne, G. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol.307, 1061–1073 (2001). ArticleCASPubMed Google Scholar
Jenco, J. M., Rawlingson, A., Daniels, B. & Morris, A. J. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by _α_- and _β_-synuclein. Biochemistry37, 4901–4909 (1998). ArticleCASPubMed Google Scholar
Okochi, M. et al. Constitutive phosphorylation of the Parkinson's disease-associated α-synuclein. J. Biol. Chem.275, 390–397 (2000). ArticleCASPubMed Google Scholar
Pronin, A. N., Morris, A. J., Surguchov, A. & Benovic, J. L. Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem.275, 26515–26522 (2000). ArticleCASPubMed Google Scholar
Engelender, S. et al. Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions. Nature Genet.22, 110–114 (1999). ArticleCASPubMed Google Scholar
Wakabayashi, K. et al. Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann. Neurol.47, 521–523 (2000). ArticleCASPubMed Google Scholar
Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron25, 239–252 (2000). ArticleCASPubMed Google Scholar
Parkinson, J. An Essay on the Shaking Palsy (Sherwood, Neely & Jones, London, 1817).The first clinical description of the disease that became known as Parkinson's disease. Google Scholar
Tretiakoff, C. Contribution à l'étude de l'anatomie pathologique du locus niger de Soemmering avec quelques déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. Thesis, Univ. Paris (1919).The first description of pathology in the substantia nigra in Parkinson's disease. Proposal that the inclusions be named after F. Lewy. Google Scholar
Hassler, R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J. Psychol. Neurol.48, 387–486 (1938). Google Scholar
Forno, L. S. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol.55, 259–272 (1996). ArticleCASPubMed Google Scholar
Langston, J. W., Ballard, P., Tetrud, J. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science219, 979–980 (1983). ArticleCASPubMed Google Scholar
Markey, S. P. et al. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature311, 464–467 (1984). ArticleCASPubMed Google Scholar
Langston, J. W., Irwin, I., Langston, E. B. & Forno, L. S. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci. Lett.48, 87–92 (1984). ArticleCASPubMed Google Scholar
Javitch, J. A., D'Amato, R. J., Strittmatter, S. M. & Snyder, S. H. Parkinsonism-inducing neurotoxin, _N_-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite _N_-methyl-4-phenylpyridine by dopamine neurons explains selective toxixity. Proc. Natl Acad. Sci. USA82, 2173–2177 (1985). ArticleCASPubMedPubMed Central Google Scholar
Nicklas, W. J., Vyas, I. & Heikkila, R. E. Inhibition of NADP-linked oxidation of brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci.36, 2503–2508 (1985). ArticleCASPubMed Google Scholar
Langston, J. W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol.46, 598–605 (1999). ArticleCASPubMed Google Scholar
Golbe, L. I. et al. A large kindred with autosomal dominant Parkinson's disease. Ann. Neurol.27, 276–282 (1990).Description of an early-onset familial form of Parkinson's disease with autopsy-confirmed Lewy body pathology in the Contursi kindred. ArticleCASPubMed Google Scholar
Denson, M. A. & Wszolek, Z. K. Familial parkinsonism: our experience and a review of the literature. Parkinsonism Related Disord.1, 1–8 (1995). Article Google Scholar
Denson, M. A. et al. Familial parkinsonism, dementia, and Lewy body disease: study of family G. Ann. Neurol.42, 638–643 (1997). ArticleCASPubMed Google Scholar
Muenter, M. D. et al. Hereditary form of parkinsonism-dementia. Ann. Neurol.43, 768–781 (1998). ArticleCASPubMed Google Scholar
Mizutani, T. et al. Familial parkinsonism and dementia with ballooned neurons, argyrophilic inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies. Acta Neuropathol.95, 15–27 (1998). ArticleCASPubMed Google Scholar
Polymeropoulos, M. H. et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science274, 1197–1199 (1996). ArticleCASPubMed Google Scholar
Athanassiadou, A. et al. Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding α-synuclein. Am. J. Hum. Genet.65, 555–558 (1999). ArticleCASPubMedPubMed Central Google Scholar
Krüger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet.18, 106–108 (1998).A second mutation in the α-synuclein gene (A30P) in a family with early-onset Parkinson's disease. ArticlePubMed Google Scholar
Krüger, R. et al. Increased susceptibility to sporadic Parkinson's disease by a certain combined α-synuclein/apolipoprotein E genotype. Ann. Neurol.45, 611–617 (1999). ArticlePubMed Google Scholar
Tan, E. K. et al. Polymorphism of NACP-Rep1 in Parkinson's disease: an etiologic link with essential tremor? Neurology54, 1195–1198 (2000). ArticleCASPubMed Google Scholar
Arima, K. et al. Immunoelectronmicroscopic demonstration of NACP/α-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson's disease and in dementia with Lewy bodies. Brain Res.808, 93–100 (1998). ArticleCASPubMed Google Scholar
Crowther, R. A., Daniel, S. E. & Goedert, M. Characterisation of isolated α-synuclein filaments from substantia nigra of Parkinson's disease brain. Neurosci. Lett.292, 128–130 (2000). ArticleCASPubMed Google Scholar
Kosaka, K. Lewy bodies in cerebral cortex. Report of three cases. Acta Neuropathol.42, 127–134 (1978). ArticleCASPubMed Google Scholar
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA95, 6469–6473 (1998). ArticleCASPubMedPubMed Central Google Scholar
Baba, M. et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol.152, 879–884 (1998). CASPubMedPubMed Central Google Scholar
Serpell, L. C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R. A. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl Acad. Sci. USA97, 4897–4902 (2000). ArticleCASPubMedPubMed Central Google Scholar
Campbell, B. C. et al. Accumulation of insoluble α-synuclein in dementia with Lewy bodies. Neurobiol. Dis.7, 192–200 (2000). ArticleCASPubMed Google Scholar
Iwanaga, K. et al. Lewy body-type degeneration in cardiac plexus in Parkinson's and incidental Lewy body diseases. Neurology52, 1269–1271 (1999). ArticleCASPubMed Google Scholar
Arai, K., Kato, N., Kashiwado, K. & Hattori, T. Pure autonomic failure in association with human α-synucleinopathy. Neurosci. Lett.296, 171–173 (2000). ArticleCASPubMed Google Scholar
Kaufmann, H., Hague, K. & Perl, D. Accumulation of α-synuclein in autonomic nerves in autonomic failure. Neurology56, 980–981 (2001). ArticleCASPubMed Google Scholar
Forno, L. S. Concentric hyaline intraneuronal inclusions of Lewy type in the brain of elderly persons (50 incidental cases): relationship to parkinsonism. J. Am. Geriat. Soc.17, 557–575 (1969). ArticleCASPubMed Google Scholar
Gibb, W. R. G. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiat.51, 745–752 (1988). ArticleCASPubMedPubMed Central Google Scholar
Lippa, C. F. et al. Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes. Am. J. Pathol.153, 1365–1370 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lippa, C. F., Schmidt, M. L., Lee, V. M.-Y. & Trojanowski, J. Q. Antibodies to α-synuclein detect Lewy bodies in many Down's syndrome brains with Alzheimer's disease. Ann. Neurol.45, 353–357 (1999). ArticleCASPubMed Google Scholar
Tu, P.-H. et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann. Neurol.44, 415–422 (1998). ArticleCASPubMed Google Scholar
Yamazaki, M. et al. α-synuclein inclusions in amygdala in the brains of patients with the parkinsonism-dementia complex of Guam. J. Neuropathol. Exp. Neurol.59, 585–591 (2000). ArticleCASPubMed Google Scholar
Spira, P. J. et al. Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann. Neurol.49, 313–319 (2001). ArticleCASPubMed Google Scholar
Gasser, T. et al. A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nature Genet.18, 262–265 (1998). ArticleCASPubMed Google Scholar
Farrer, M. et al. A chromosome 4p haplotype segregating with Parkinson's disease and postural tremor. Hum. Mol. Genet.8, 81–85 (1999). ArticleCASPubMed Google Scholar
Gwinn-Hardy, K. et al. Distinctive neuropathology revealed by α-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol.99, 663–672 (2000). ArticleCASPubMed Google Scholar
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392, 605–608 (1998).Identification of mutations in theparkingene as a genetic cause of autosomal recessive juvenile parkinsonism (AR–JP). ArticleCASPubMed Google Scholar
Lücking, C. B. et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med.342, 1560–1567 (2000). ArticlePubMed Google Scholar
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet.25, 302–305 (2000). ArticleCASPubMed Google Scholar
Imai, Y., Soda, M. & Takahashi, R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem.275, 35661–35664 (2000). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA97, 13354–13359 (2000). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, H. et al. Familial juvenile parkinsonism: clinical and pathological study in a family. Neurology44, 437–441 (1994). ArticleCASPubMed Google Scholar
Mori, H. et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology51, 890–892 (1998). ArticleCASPubMed Google Scholar
Van de Warrenburg, B. P. C. et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology56, 555–557 (2001). ArticleCASPubMed Google Scholar
Valente, E. M. et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on chromosome 1p35-36. Am. J. Hum. Genet.68, 895–900 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wakabayashi, K., Yoshimoto, M., Tsuji, S. & Takahashi, H. α-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett.249, 180–182 (1998).This and references64and81–83showed, at about the same time, the presence of α-synuclein in the neuropathological lesions that define multiple system atrophy. ArticleCASPubMed Google Scholar
Mezey, E. et al. α-synuclein in neurodegenerative disorders: murderer or accomplice? Nature Med.4, 755–757 (1998). ArticleCASPubMed Google Scholar
Spillantini, M. G. et al. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci. Lett.251, 205–208 (1998). ArticleCASPubMed Google Scholar
Gai, W. P., Power, J. H., Blumbergs, P. C. & Blessing, W. W. Multiple system atrophy: a new α-synuclein disease? Lancet352, 547–548 (1998). ArticleCASPubMed Google Scholar
Wakabayashi, K. et al. Accumulation of α-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol.96, 445–452 (1998). ArticleCASPubMed Google Scholar
Papp, M. I., Kahn, J. E. & Lantos, P. L. Glial cytopasmic inclusions in the CNS of patients with multiple system atrophy. J. Neurol. Sci.94, 79–100 (1989).The first description of the defining neuropathological characteristics of multiple system atrophy. ArticleCASPubMed Google Scholar
Lantos, P. L. The definition of multiple system atrophy: a review of recent developments. J. Neuropathol. Exp. Neurol.57, 1099–1111 (1998). ArticleCASPubMed Google Scholar
Wenning, G. K., Quinn, N., Magalhaes, M., Mathias, C. & Daniel, S. E. 'Minimal change' multiple system atrophy. Mov. Disord.9, 161–166 (1994). ArticleCASPubMed Google Scholar
Campbell, B. C. V. et al. The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson's disease. J. Neurochem.76, 87–96 (2001). ArticleCASPubMed Google Scholar
Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry35, 13709–13715 (1996). ArticleCASPubMed Google Scholar
Crowther, R. A., Jakes, R., Spillantini, M. G. & Goedert, M. Synthetic filaments assembled from C-terminally truncated α-synuclein. FEBS Lett.436, 309–312 (1998). ArticleCASPubMed Google Scholar
Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson's disease. Nature Med.4, 1318–1320 (1998). ArticleCASPubMed Google Scholar
El-Agnaf, O. M. A., Jakes, R., Curran, M. D. & Wallace, A. Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of α-synuclein protein implicated in Parkinson's disease. FEBS Lett.440, 67–70 (1998). ArticleCASPubMed Google Scholar
Giasson, B. I., Uryu, K., Trojanowski, J. Q. & Lee, V. M.-Y. Mutant and wild-type human α-synuclein assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem.274, 7619–7622 (1999). ArticleCASPubMed Google Scholar
Narhi, L. et al. Parkinson's disease mutations accelerate α-synuclein aggregation. J. Biol. Chem.274, 9843–9846 (1999). ArticleCASPubMed Google Scholar
Wood, S. J. et al. α-synuclein fibrillogenesis is nucleation-dependent. J. Biol. Chem.274, 19509–19512 (1999). ArticleCASPubMed Google Scholar
Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA97, 571–576 (2000). ArticleCASPubMedPubMed Central Google Scholar
Conway, K. A., Harper, J. D. & Lansbury, P. T. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry39, 2552–2563 (2000). ArticleCASPubMed Google Scholar
Biere, A. L. et al. Parkinson's disease-associated α-synuclein is more fibrillogenic than β- and γ-synuclein and cannot cross-seed its homologs. J. Biol. Chem.275, 34574–34579 (2000). ArticleCASPubMed Google Scholar
Giasson, B. I., Murray, I. V. J., Trojanowski, J. Q. & Lee, V. M.-Y. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J. Biol. Chem.276, 2380–2386 (2001). ArticleCASPubMed Google Scholar
Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science287, 1265–1269 (2000). ArticleCASPubMed Google Scholar
Kahle, P. J. et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant α-synuclein in human and transgenic mouse brain. J. Neurosci.20, 6365–6373 (2000). ArticleCASPubMedPubMed Central Google Scholar
Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature404, 394–398 (2000).The expression of wild-type and mutant human α-synuclein in nerve cells ofDrosophilaresults in the formation of α-synuclein inclusions, the degeneration of some dopamine nerve cells, and the appearance of locomotor defects. ArticleCASPubMed Google Scholar
Perutz, M. F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci.24, 58–63 (1999). ArticleCASPubMed Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). ArticleCASPubMed Google Scholar
McNaught, K. St. P. & Jenner, P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett.297, 191–194 (2001). ArticleCASPubMed Google Scholar
Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci.3, 1301–1306 (2000).The chronic administration of rotenone to rats results in the degeneration of dopamine nerve cells in the substantia nigra and the formation of α-synuclein-positive filamentous inclusions that resemble Lewy bodies. ArticleCASPubMed Google Scholar
Hensley, K. et al. Interaction of α-phenyl-_N_-_tert_-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J. Neurochem.71, 2549–2557 (1998). ArticleCASPubMed Google Scholar
Ostrerova-Golts, N. et al. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci.20, 6048–6054 (2000). ArticleCASPubMedPubMed Central Google Scholar
Uversky, V. N., Li, J. & Fink, A. K. Evidence for a partially folded intermediate in α-synuclein fibril formation. J. Biol. Chem.276, 10737–10744 (2001). ArticleCASPubMed Google Scholar
Olanow, C. W. & Tatton, W. G. Etiology and pathogenesis of Parkinson's disease. Ann. Rev. Neurosci.22, 123–144 (1999). ArticleCASPubMed Google Scholar
Schapira, A. H. V. Mitochondrial complex I deficiency in Parkinson's disease. Lancet1, 1269 (1989). ArticleCASPubMed Google Scholar
Mizuno, Y. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun.163, 1450–1455 (1989). ArticleCASPubMed Google Scholar
Good, P. F., Hsu, A., Werner, P., Perl, D. P. & Olanow, C. W. Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol.57, 338–342 (1998). ArticleCASPubMed Google Scholar
Giasson, B. I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290, 985–989 (2000). ArticleCASPubMed Google Scholar
Montagu, K. A. Catechol compounds in rat tissues and in brains of different animals. Nature180, 244–245 (1957). ArticleCASPubMed Google Scholar
Carlsson, A., Lindqvist, M., Magnusson, T. & Waldeck, B. On the presence of 3-hydroxytyramine in brain. Science127, 471 (1958). ArticleCASPubMed Google Scholar
Bertler, A. & Rosengren, E. Occurrence and distribution of dopamine in brain and other tissues. Experientia15, 10–11 (1959). ArticleCASPubMed Google Scholar
Sano, I. et al. Distribution of catechol compounds in human brain. Biochim. Biophys. Acta32, 586–587 (1959). ArticleCASPubMed Google Scholar
Carlsson, A., Lindqvist, M. & Magnusson, T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature180, 1200 (1957). ArticleCASPubMed Google Scholar
Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev.11, 490–493 (1959). CASPubMed Google Scholar
Ehringer, H. & Hornykiewicz, O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Ekrankungen des extrapyramidalen Systems. Klin. Wschr.38, 1236–1239 (1960). ArticleCASPubMed Google Scholar
Birkmayer, W. & Hornykiewicz, O. Der L-Dioxyphenylalanin effekt bei der Parkinson-Akinese. Wien. klin. Wschr.73, 787–788 (1961). CASPubMed Google Scholar
Barbeau, A., Sourkes, T. L. & Murphy, G. F. in Monoamines et Système Nerveux Central (ed. De Ajuriaguerra, J.) 247–262 (Masson & Cie., Paris, 1962). Google Scholar
Cotzias, G. C., Papavasiliou, P. S. & Fehling, S. Modification of parkinsonism: chronic treatment with L-DOPA. N. Engl. J. Med.280, 337–345 (1969). ArticleCASPubMed Google Scholar