Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission (original) (raw)
References
Dimitrov, D. S. et al. Quantitation of human immunodeficiency virus type 1 infection kinetics. J. Virol.67, 2182–2190 (1993). CASPubMedPubMed Central Google Scholar
Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol.81, 1000–1012 (2007). ArticleCASPubMed Google Scholar
Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q. J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med.199, 283–293 (2004). ArticleCASPubMedPubMed Central Google Scholar
McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science300, 1295–1297 (2003). ArticleCASPubMed Google Scholar
Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biol.9, 310–315 (2007). ArticleCASPubMed Google Scholar
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science303, 1007–1010 (2004). ArticleCASPubMed Google Scholar
Onfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting edge: Membrane nanotubes connect immune cells. J. Immunol.173, 1511–1513 (2004). ArticlePubMed Google Scholar
Watkins, S. C. & Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity23, 309–318 (2005). ArticleCASPubMed Google Scholar
Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). ArticleCASPubMed Google Scholar
Onfelt, B. et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol.177, 8476–8483 (2006). ArticlePubMed Google Scholar
Gerdes, H. H., Bukoreshtliev, N. V. & Barroso, J. F. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett.581, 2194–2201 (2007). ArticleCASPubMed Google Scholar
Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature Rev. Immunol.7, 238–243 (2007). ArticleCAS Google Scholar
Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med.200, 847–856 (2004). ArticleCASPubMedPubMed Central Google Scholar
Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science315, 528–531 (2007). ArticleCASPubMed Google Scholar
Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity13, 323–332 (2000). ArticleCASPubMed Google Scholar
Daniels, D. R. & Turner, M. S. Diffusion on membrane tubes: a highly discriminatory test of the Saffman-Delbruck theory. Langmuir23, 6667–6670 (2007). ArticleCASPubMed Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). ArticleCASPubMed Google Scholar
Freed, E. O. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology251, 1–15 (1998). ArticleCASPubMed Google Scholar
Greene, W. C. & Peterlin, B. M. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nature Med.8, 673–680 (2002). ArticleCASPubMed Google Scholar
Muller, B. et al. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J. Virol.78, 10803–10813 (2004). ArticlePubMedPubMed Central Google Scholar
Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell8, 109–119 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mitchison, T. J. Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motil. Cytoskel.22, 135–151 (1992). ArticleCAS Google Scholar
Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol.170, 317–325 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature434, 1093–1097 (2005). ArticleCASPubMed Google Scholar
Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature434, 1148–1152 (2005). ArticleCASPubMed Google Scholar
Favoreel, H. W., Van Minnebruggen, G., Adriaensen, D. & Nauwynck, H. J. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc. Natl Acad. Sci. USA102, 8990–8995 (2005). ArticleCASPubMedPubMed Central Google Scholar
La Boissiere, S., Izeta, A., Malcomber, S. & O'Hare, P. Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16-green fluorescent protein fusion proteins. J. Virol.78, 8002–8014 (2004). ArticleCASPubMedPubMed Central Google Scholar
Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem.279, 16657–16661 (2004). ArticleCASPubMed Google Scholar