Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998). CASPubMed CentralPubMed Google Scholar
Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med.187, 1383–1393 (1998). CASPubMed CentralPubMed Google Scholar
Virgin, H.W., Wherry, E.J. & Ahmed, R. Redefining chronic viral infection. Cell138, 30–50 (2009). CASPubMed Google Scholar
Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol.25, 171–192 (2007). CASPubMed Google Scholar
Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77, 4911–4927 (2003). CASPubMed CentralPubMed Google Scholar
Wherry, E.J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol.78, 5535–5545 (2004). CASPubMed CentralPubMed Google Scholar
Fuller, M.J. & Zajac, A.J. Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol.170, 477–486 (2003). CASPubMed Google Scholar
Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature362, 758–761 (1993). CASPubMed Google Scholar
Blattman, J.N., Wherry, E.J., Ha, S.J., van der Most, R.G. & Ahmed, R. Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J. Virol.83, 4386–4394 (2009). CASPubMed CentralPubMed Google Scholar
Brooks, D.G., Teyton, L., Oldstone, M.B. & McGavern, D.B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol.79, 10514–10527 (2005). CASPubMed CentralPubMed Google Scholar
Oxenius, A., Zinkernagel, R.M. & Hengartner, H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity9, 449–457 (1998). CASPubMed Google Scholar
Kaufmann, D.E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol.8, 1246–1254 (2007). CASPubMed Google Scholar
Urbani, S. et al. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology44, 126–139 (2006). CASPubMed Google Scholar
Frohlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science324, 1576–1580 (2009). PubMed Google Scholar
Yi, J.S., Du, M. & Zajac, A.J. A vital role for interleukin-21 in the control of a chronic viral infection. Science324, 1572–1576 (2009). CASPubMed CentralPubMed Google Scholar
Elsaesser, H., Sauer, K. & Brooks, D.G. IL-21 is required to control chronic viral infection. Science324, 1569–1572 (2009). CASPubMed CentralPubMed Google Scholar
Blackburn, S.D. & Wherry, E.J. IL-10, T cell exhaustion and viral persistence. Trends Microbiol.15, 143–146 (2007). CASPubMed Google Scholar
Brooks, D.G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med.12, 1301–1309 (2006). CASPubMed CentralPubMed Google Scholar
Betts, M.R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood107, 4781–4789 (2006). CASPubMed CentralPubMed Google Scholar
Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med.191, 1499–1512 (2000). CASPubMed CentralPubMed Google Scholar
Bowen, D.G. & Walker, C.M. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature436, 946–952 (2005). CASPubMed Google Scholar
Mueller, S.N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. USA104, 15430–15435 (2007). CASPubMedPubMed Central Google Scholar
Liu, B., Woltman, A.M., Janssen, H.L. & Boonstra, A. Modulation of dendritic cell function by persistent viruses. J. Leukoc. Biol.85, 205–214 (2009). CASPubMed Google Scholar
Sevilla, N., Kunz, S., McGavern, D. & Oldstone, M.B. Infection of dendritic cells by lymphocytic choriomeningitis virus. Curr. Top. Microbiol. Immunol.276, 125–144 (2003). CASPubMed CentralPubMed Google Scholar
Matter, M., Odermatt, B., Yagita, H., Nuoffer, J.M. & Ochsenbein, A.F. Elimination of chronic viral infection by blocking CD27 signaling. J. Exp. Med.203, 2145–2155 (2006). CASPubMed CentralPubMed Google Scholar
Schacker, T. The role of secondary lymphatic tissue in immune deficiency of HIV infection. AIDS22 (Suppl 3), S13–S18 (2008). CASPubMed Google Scholar
Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest.121, 998–1008 (2011). CASPubMed CentralPubMed Google Scholar
Shin, H. & Wherry, E.J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol.19, 408–415 (2007). CASPubMed Google Scholar
Shin, H., Blackburn, S.D., Blattman, J.N. & Wherry, E.J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med.204, 941–949 (2007). CASPubMed CentralPubMed Google Scholar
Wherry, E.J., Barber, D.L., Kaech, S.M., Blattman, J.N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl. Acad. Sci. USA101, 16004–16009 (2004). CASPubMed CentralPubMed Google Scholar
Migueles, S.A. et al. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J. Virol.83, 11876–11889 (2009). CASPubMed CentralPubMed Google Scholar
Kasprowicz, V. et al. Hepatitis C virus (HCV) sequence variation induces an HCV-specific T-cell phenotype analogous to spontaneous resolution. J. Virol.84, 1656–1663 (2010). CASPubMed Google Scholar
Streeck, H. et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med.5, e100 (2008). PubMed CentralPubMed Google Scholar
Vezys, V. et al. Continuous recruitment of naïve T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J. Exp. Med.10, 2263–2269 (2006). Google Scholar
Miller, N.E., Bonczyk, J.R., Nakayama, Y. & Suresh, M. Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. J. Virol.79, 9419–9429 (2005). CASPubMed CentralPubMed Google Scholar
Trimble, L.A., Kam, L.W., Friedman, R.S., Xu, Z. & Lieberman, J. CD3zeta and CD28 down-modulation on CD8 T cells during viral infection. Blood96, 1021–1029 (2000). CASPubMed Google Scholar
Reignat, S. et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med.195, 1089–1101 (2002). CASPubMed CentralPubMed Google Scholar
Freeman, G.J., Wherry, E.J., Ahmed, R. & Sharpe, A.H. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J. Exp. Med.203, 2223–2227 (2006). CASPubMed CentralPubMed Google Scholar
Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature439, 682–687 (2006). CASPubMed Google Scholar
Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med.203, 2281–2292 (2006). CASPubMed CentralPubMed Google Scholar
Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med.12, 1198–1202 (2006). CASPubMed Google Scholar
Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature443, 350–354 (2006). CASPubMed Google Scholar
Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature458, 206–210 (2009). CASPubMed Google Scholar
Brahmer, J.R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28, 3167–3175 (2010). CASPubMed CentralPubMed Google Scholar
Blackburn, S.D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol.10, 29–37 (2009). CASPubMed Google Scholar
Crawford, A. & Wherry, E.J. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol.21, 179–186 (2009). CASPubMed CentralPubMed Google Scholar
Nakamoto, N. et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog.5, e1000313 (2009). PubMed CentralPubMed Google Scholar
Jin, H.T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA107, 14733–14738 (2010). CASPubMedPubMed Central Google Scholar
Kassu, A. et al. Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J. Immunol.185, 3007–3018 (2010). CASPubMed Google Scholar
Grosso, J.F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol.182, 6659–6669 (2009). CASPubMed Google Scholar
Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. USA107, 7875–7880 (2010). CASPubMedPubMed Central Google Scholar
Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med.207, 2175–2186 (2010). CASPubMed CentralPubMed Google Scholar
Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207, 2187–2194 (2010). CASPubMed CentralPubMed Google Scholar
Petrovas, C. et al. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood110, 928–936 (2007). CASPubMed CentralPubMed Google Scholar
Blackburn, S.D. et al. Tissue specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T cell exhaustion. J. Virol.84, 2078–2089 (2010). CASPubMed Google Scholar
Blackburn, S.D., Shin, H., Freeman, G.J. & Wherry, E.J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl. Acad. Sci. USA105, 15016–15021 (2008). CASPubMed CentralPubMed Google Scholar
Workman, C.J. et al. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J. Immunol.172, 5450–5455 (2004). CASPubMed Google Scholar
Pentcheva-Hoang, T., Egen, J.G., Wojnoonski, K. & Allison, J.P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity21, 401–413 (2004). CASPubMed Google Scholar
Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. & Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA98, 13866–13871 (2001). CASPubMedPubMed Central Google Scholar
Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H. & Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol.173, 945–954 (2004). CASPubMed Google Scholar
Parry, R.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol.25, 9543–9553 (2005). CASPubMed CentralPubMed Google Scholar
Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med.16, 1147–1151 (2010). CASPubMed CentralPubMed Google Scholar
Zhou, S., Ou, R., Huang, L. & Moskophidis, D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J. Virol.76, 829–840 (2002). CASPubMed CentralPubMed Google Scholar
Bucks, C.M., Norton, J.A., Boesteanu, A.C., Mueller, Y.M. & Katsikis, P.D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J. Immunol.182, 6697–6708 (2009). CASPubMed Google Scholar
Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med.203, 2461–2472 (2006). CASPubMed CentralPubMed Google Scholar
Said, E.A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med.16, 452–459 (2011). Google Scholar
Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E.I. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity31, 145–157 (2009). CASPubMed CentralPubMed Google Scholar
Alatrakchi, N. et al. Hepatitis C virus (HCV)-specific CD8+ cells produce transforming growth factor β that can suppress HCV-specific T-cell responses. J. Virol.81, 5882–5892 (2007). CASPubMed CentralPubMed Google Scholar
Garba, M.L., Pilcher, C.D., Bingham, A.L., Eron, J. & Frelinger, J.A. HIV antigens can induce TGF-β(1)-producing immunoregulatory CD8+ T cells. J. Immunol.168, 2247–2254 (2002). CASPubMed Google Scholar
Leone, A., Picker, L.J. & Sodora, D.L. IL-2, IL-7 and IL-15 as immuno-modulators during SIV/HIV vaccination and treatment. Curr. HIV Res.7, 83–90 (2009). CASPubMed Google Scholar
Blattman, J.N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med.9, 540–547 (2003). CASPubMed Google Scholar
Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell144, 601–613 (2011). CASPubMed Google Scholar
Nanjappa, S.G., Kim, E.H. & Suresh, M. Immunotherapeutic effects of IL-7 during a chronic viral infection in mice. Blood published online, doi:10.1182/blood-2010-12-323154 (23 March 2011).
Yue, F.Y. et al. HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J. Immunol.185, 498–506 (2011). Google Scholar
Chevalier, M.F. et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol.85, 733–741 (2011). CASPubMed Google Scholar
Williams, L.D. et al. Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J. Virol.85, 2316–2324 (2011). CASPubMed Google Scholar
Punkosdy, G.A. et al. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc. Natl. Acad. Sci. USA108, 3677–3682 (2011). CASPubMedPubMed Central Google Scholar
Belkaid, Y. & Rouse, B.T. Natural regulatory T cells in infectious disease. Nat. Immunol.6, 353–360 (2005). CASPubMed Google Scholar
Collison, L.W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature450, 566–569 (2007). CASPubMed Google Scholar
Collison, L.W. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol.11, 1093–1101 (2011). Google Scholar
Rifa'i, M., Kawamoto, Y., Nakashima, I. & Suzuki, H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J. Exp. Med.200, 1123–1134 (2004). CASPubMed CentralPubMed Google Scholar
Joosten, S.A. et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc. Natl. Acad. Sci. USA104, 8029–8034 (2007). CASPubMedPubMed Central Google Scholar
Martinez, F.O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol.27, 451–483 (2009). CASPubMed Google Scholar
Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol.4, 762–774 (2004). CASPubMed Google Scholar
Haining, W.N. & Wherry, E.J. Integrating genomic signatures for immunologic discovery. Immunity32, 152–161 (2010). CASPubMed Google Scholar
Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity27, 670–684 (2007). CASPubMed Google Scholar
Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity31, 309–320 (2009). CASPubMed CentralPubMed Google Scholar
Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol.26, 133–169 (2008). CASPubMed Google Scholar
Bikoff, E.K., Morgan, M.A. & Robertson, E.J. An expanding job description for Blimp-1/PRDM1. Curr. Opin. Genet. Dev.19, 379–385 (2009). CASPubMed Google Scholar
Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity31, 283–295 (2009). CASPubMed Google Scholar
Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity31, 296–308 (2009). CASPubMed CentralPubMed Google Scholar
Joshi, N.S. & Kaech, S.M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol.180, 1309–1315 (2008). CASPubMed Google Scholar
Kao, C. et al. T-bet represses expression of PD-1 and sustains virus-specific CD8 T cell responses during chronic infection. Nat. Immunol. (in the press).
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). CASPubMed Google Scholar
Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl. Acad. Sci. USA104, 4565–4570 (2007). CASPubMedPubMed Central Google Scholar
Migueles, S.A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity29, 1009–1021 (2008). CASPubMed CentralPubMed Google Scholar
Oestreich, K.J., Yoon, H., Ahmed, R. & Boss, J.M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol.181, 4832–4839 (2008). CASPubMed Google Scholar
Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol.3, 643–651 (2002). CASPubMed Google Scholar
Mehta, D.S., Wurster, A.L., Weinmann, A.S. & Grusby, M.J. NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proc. Natl. Acad. Sci. USA102, 2016–2021 (2005). CASPubMedPubMed Central Google Scholar
Williams, K.L. et al. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur. J. Immunol.31, 1620–1627 (2001). CASPubMed Google Scholar
Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature460, 405–409 (2009). CASPubMed CentralPubMed Google Scholar
Brenchley, J.M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood101, 2711–2720 (2003). CASPubMed Google Scholar
van Leeuwen, E.M., de Bree, G.J., ten Berge, I.J. & van Lier, R.A. Human virus-specific CD8+ T cells: diversity specialists. Immunol. Rev.211, 225–235 (2006). CASPubMed Google Scholar
Lichterfeld, M. et al. Telomerase activity of HIV-1-specific CD8+ T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors. Blood112, 3679–3687 (2008). CASPubMed CentralPubMed Google Scholar
Akbar, A.N. & Henson, S.M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol.11, 289–295 (2011). CASPubMed Google Scholar
Wirth, T.C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity33, 128–140 (2011). Google Scholar
Hertoghs, K.M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest.120, 4077–4090 (2011). Google Scholar
Brooks, D.G., Lee, A.M., Elsaesser, H., McGavern, D.B. & Oldstone, M.B. IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J. Exp. Med.205, 533–541 (2008). CASPubMed CentralPubMed Google Scholar
Brooks, D.G. et al. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc. Natl. Acad. Sci. USA105, 20428–20433 (2008). CASPubMedPubMed Central Google Scholar
Ha, S.J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med.205, 543–555 (2008). CASPubMed CentralPubMed Google Scholar
Nakamoto, N. et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology134, 1927–1937 (2008). CASPubMed Google Scholar
Lauer, G.M. & Kim, A.Y. Spontaneous resolution of chronic hepatitis C virus infection: are we missing something? Clin. Infect. Dis.42, 953–954 (2006). PubMed Google Scholar
Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med.205, 1797–1805 (2008). CASPubMed CentralPubMed Google Scholar
Weiss, G.E. et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol.183, 2176–2182 (2009). CASPubMed Google Scholar