- Wang, B.X. & Fish, E.N. The yin and yang of viruses and interferons. Trends Immunol. 33, 190–197 (2012).
Article Google Scholar
- Brunner, K.T., Hurez, D., Mc, C.R. & Benacerraf, B. Blood clearance of P32-labeled vesicular stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice. J. Immunol. 85, 99–105 (1960).
CAS PubMed Google Scholar
- Shapiro, S.D., Kobayashi, D.K. & Ley, T.J. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem. 268, 23824–23829 (1993).
CAS PubMed Google Scholar
- Belvisi, M.G. & Bottomley, K.M. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm. Res. 52, 95–100 (2003).
Article CAS Google Scholar
- Liang, J. et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation 113, 1993–2001 (2006).
Article CAS Google Scholar
- Curci, J.A., Liao, S., Huffman, M.D., Shapiro, S.D. & Thompson, R.W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 102, 1900–1910 (1998).
Article CAS Google Scholar
- McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).
Article CAS Google Scholar
- Parks, W.C., Wilson, C.L. & Lopez-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 4, 617–629 (2004).
Article CAS Google Scholar
- Morrison, C.J., Butler, G.S., Rodriguez, D. & Overall, C.M. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr. Opin. Cell Biol. 21, 645–653 (2009).
Article CAS Google Scholar
- Houghton, A.M. et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 66, 6149–6155 (2006).
Article CAS Google Scholar
- Dean, R.A. et al. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112, 3455–3464 (2008).
Article CAS Google Scholar
- Houghton, A.M., Hartzell, W.O., Robbins, C.S., Gomis-Ruth, F.X. & Shapiro, S.D. Macrophage elastase kills bacteria within murine macrophages. Nature 460, 637–641 (2009).
Article CAS Google Scholar
- Lambert, A.L., Mangum, J.B., DeLorme, M.P. & Everitt, J.I. Ultrafine carbon black particles enhance respiratory syncytial virus–induced airway reactivity, pulmonary inflammation, and chemokine expression. Toxicol. Sci. 72, 339–346 (2003).
Article CAS Google Scholar
- Samuel, C.E. Antiviral actions of interferons. Clinical Microbiol. Rev. 14, 778–809 (2001).
Article CAS Google Scholar
- Guerrero-Plata, A., Casola, A. & Garofalo, R.P. Human metapneumovirus induces a profile of lung cytokines distinct from that of respiratory syncytial virus. J. Virol. 79, 14992–14997 (2005).
Article CAS Google Scholar
- Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).
Article CAS Google Scholar
- Garmaroudi, F.S. et al. Pairwise network mechanisms in the host signaling response to coxsackievirus B3 infection. Proc. Natl. Acad. Sci. USA 107, 17053–17058 (2010).
Article CAS Google Scholar
- Shimizu-Hirota, R. et al. MT1-MMP- regulates the PI3Kδ.Mi-2/NuRD–dependent control of macrophage immune function. Genes Dev. 26, 395–413 (2012).
Article CAS Google Scholar
- Wang, X. et al. Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation 119, 2480–2489 (2009).
Article CAS Google Scholar
- Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
Article CAS Google Scholar
- Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 28, 281–288 (2010).
Article CAS Google Scholar
- Koyanagi, S., Ohdo, S., Yukawa, E. & Higuchi, S. Chronopharmacological study of interferon-alpha in mice. J. Pharmacol. Exp. Ther. 283, 259–264 (1997).
CAS PubMed Google Scholar
- Butler, G.S. & Overall, C.M. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat. Rev. Drug Discov. 8, 935–948 (2009).
Article CAS Google Scholar
- Dufour, A. & Overall, C.M. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol. Sci. 34, 233–242 (2013).
Article CAS Google Scholar
- Overall, C.M. & Kleifeld, O. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).
Article CAS Google Scholar
- Devel, L. et al. Development of selective inhibitors and substrate of matrix metalloproteinase-12. J. Biol. Chem. 281, 11152–11160 (2006).
Article CAS Google Scholar
- Johnson, J.L. et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E–knockout mice. Arterioscler. Thromb. Vasc. Biol. 31, 528–535 (2011).
Article CAS Google Scholar
- Rizza, P., Moretti, F. & Belardelli, F. Recent advances on the immunomodulatory effects of IFN-α: implications for cancer immunotherapy and autoimmunity. Autoimmunity 43, 204–209 (2010).
Article CAS Google Scholar
- Cheung, C. et al. Ablation of matrix metalloproteinase-9 increases severity of viral myocarditis in mice. Circulation 117, 1574–1582 (2008).
Article CAS Google Scholar
- Starr, A.E. & Overall, C.M. Chapter 13. Characterizing proteolytic processing of chemokines by mass spectrometry, biochemistry, neo-epitope antibodies and functional assays. Methods Enzymol. 461, 281–307 (2009).
Article CAS Google Scholar
- Buroker, N.E., Barboza, J. & Huang, J.Y. The IκBα gene is a peroxisome proliferator–activated receptor cardiac target gene. FEBS J. 276, 3247–3255 (2009).
Article CAS Google Scholar
- Kleifeld, O. et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc. 6, 1578–1611 (2011).
Article CAS Google Scholar
- Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).
Article CAS Google Scholar
- auf dem Keller, U., Prudova, A., Gioia, M., Butler, G.S. & Overall, C.M. A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol. Cell. Proteomics 9, 912–927 (2010).
Article CAS Google Scholar
- Prudova, A., auf dem Keller, U., Butler, G.S. & Overall, C.M. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894–911 (2010).
Article CAS Google Scholar
- Fahlman, R.P., Chen, W. & Overall, C.M. Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags. J. Proteomics 100, 79–91 (2014).
Article CAS Google Scholar
- Pedrioli, P.G. Trans-proteomic pipeline: a pipeline for proteomic analysis. Methods Mol. Biol. 604, 213–238 (2010).
Article CAS Google Scholar
- Deutsch, E.W. et al. A guided tour of the Trans-Proteomic Pipeline. Proteomics 10, 1150–1159 (2010).
Article CAS Google Scholar
- Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).
Article CAS Google Scholar
- auf dem Keller, U. & Overall, C.M. An add-on to the Trans-Proteomic Pipeline for the Automated Analysis of TAILS data. Biol. Chem. 393, 1477–1483 (2012).
Article CAS Google Scholar