Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc (original) (raw)

References

  1. Kalivas, P.W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol. 4, 23–29 (2004).
    Article CAS Google Scholar
  2. Kauer, J.A. & Malenka, R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007).
    Article CAS Google Scholar
  3. Thomas, M.J., Kalivas, P.W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 154, 327–342 (2008).
    Article CAS Google Scholar
  4. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).
    Article CAS Google Scholar
  5. Bellone, C. & Lüscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).
    Article CAS Google Scholar
  6. Argilli, E., Sibley, D.R., Malenka, R.C., England, P.M. & Bonci, A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J. Neurosci. 28, 9092–9100 (2008).
    Article CAS Google Scholar
  7. Saal, D., Dong, Y., Bonci, A. & Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).
    Article CAS Google Scholar
  8. Borgland, S.L., Malenka, R.C. & Bonci, A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci. 24, 7482–7490 (2004).
    Article CAS Google Scholar
  9. Chen, B.T. et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59, 288–297 (2008).
    Article CAS Google Scholar
  10. Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).
    Article CAS Google Scholar
  11. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).
    Article CAS Google Scholar
  12. Churchill, L., Swanson, C.J., Urbina, M. & Kalivas, P.W. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403 (1999).
    Article CAS Google Scholar
  13. Boudreau, A.C. & Wolf, M.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).
    Article CAS Google Scholar
  14. Grimm, J.W., Hope, B.T., Wise, R.A. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).
    Article CAS Google Scholar
  15. Ping, A., Xi, J., Prasad, B.M., Wang, M.H. & Kruzich, P.J. Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA- and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Res. 1215, 173–182 (2008).
    Article CAS Google Scholar
  16. Kessels, H.W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).
    Article CAS Google Scholar
  17. Mameli, M., Balland, B., Lujan, R. & Lüscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).
    Article CAS Google Scholar
  18. Mao, L. et al. The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal–regulated protein kinase cascades in neurons. J. Neurosci. 25, 2741–2752 (2005).
    Article CAS Google Scholar
  19. Ronesi, J.A. & Huber, K.M. Homer interactions are necessary for metabotropic glutamate receptor–induced long-term depression and translational activation. J. Neurosci. 28, 543–547 (2008).
    Article CAS Google Scholar
  20. Moroni, F. et al. Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist. J. Pharmacol. Exp. Ther. 281, 721–729 (1997).
    CAS PubMed Google Scholar
  21. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).
    Article CAS Google Scholar
  22. Engblom, D. et al. Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 59, 497–508 (2008).
    Article CAS Google Scholar
  23. Anderson, S.M. et al. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat. Neurosci. 11, 344–353 (2008).
    Article CAS Google Scholar
  24. Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).
    Article CAS Google Scholar
  25. Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).
    Article CAS Google Scholar
  26. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
    Article CAS Google Scholar
  27. Lüscher, C. & Bellone, C. Cocaine-evoked synaptic plasticity: a key to addiction? Nat. Neurosci. 11, 737–738 (2008).
    Article Google Scholar
  28. Zweifel, L.S., Argilli, E., Bonci, A. & Plamiter, R.D. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 59, 486–496 (2008).
    Article CAS Google Scholar
  29. Vezina, P. & Queen, A.L. Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology (Berl.) 151, 184–191 (2000).
    Article CAS Google Scholar
  30. Harris, G.C., Wimmer, M., Byrne, R. & Aston-Jones, G. Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience 129, 841–847 (2004).
    Article CAS Google Scholar
  31. Dong, Y. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA−/− mice. Proc. Natl. Acad. Sci. USA 101, 14282–14287 (2004).
    Article CAS Google Scholar
  32. Mead, A.N., Brown, G., Le Merrer, J. & Stephens, D.N. Effects of deletion of gria1 or gria2 genes encoding glutamatergic AMPA-receptor subunits on place preference conditioning in mice. Psychopharmacology (Berl.) 179, 164–171 (2005).
    Article CAS Google Scholar
  33. Carlezon, W.A. Jr & Nestler, E.J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610–615 (2002).
    Article CAS Google Scholar
  34. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).
    Article CAS Google Scholar
  35. Zhao, S. et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140 (2004).
    Article Google Scholar

Download references