Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor (original) (raw)

References

  1. Bennet, M.R., Gibson, W.G. & Lemon, G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton. Neurosci. 95, 1–23 (2002).
    Article CAS Google Scholar
  2. Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111, 457–501 (1949).
    Article CAS Google Scholar
  3. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).
    Article CAS Google Scholar
  4. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).
    Article CAS Google Scholar
  5. Hume, D.A., Perry, V.H. & Gordon, S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97, 253–257 (1983).
    Article CAS Google Scholar
  6. Perry, V.H., Hume, D.A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985).
    Article CAS Google Scholar
  7. O'Connor, T.M. & Wyttenbach, C.R. Cell death in the embryonic chick spinal cord. J. Cell Biol. 60, 448–459 (1974).
    Article CAS Google Scholar
  8. Pannese, E. The response of the satellite and other non-neuronal cells to the degeneration of neuroblasts in chick embryo spinal ganglia. Cell Tissue Res. 190, 1–14 (1978).
    Article CAS Google Scholar
  9. Bratton, D.L. & Henson, P.M. Apoptotic cell recognition: will the real phosphatidylserine receptor(s) please stand up? Curr. Biol. 18, R76–R79 (2008).
    Article CAS Google Scholar
  10. Gregory, C.D. & Brown, S.B. Apoptosis: eating sensibly. Nat. Cell Biol. 7, 1161–1163 (2005).10.1038/ncb1205-1161
    Article PubMed Google Scholar
  11. Grimsley, C. & Ravichandran, K.S. Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends Cell Biol. 13, 648–656 (2003).
    Article CAS Google Scholar
  12. Henson, P.M. & Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244–250 (2006).
    Article CAS Google Scholar
  13. Freeman, M.R., Delrow, J., Kim, J., Johnson, E. & Doe, C.Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).
    Article CAS Google Scholar
  14. Zhou, Z., Hartwieg, E. & Horvitz, H.R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).
    Article CAS Google Scholar
  15. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).
    Article CAS Google Scholar
  16. MacDonald, J.M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).
    Article CAS Google Scholar
  17. Manaka, J. et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 279, 48466–48476 (2004).
    Article CAS Google Scholar
  18. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).
    Article CAS Google Scholar
  19. Hamon, Y. et al. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 1, e120 (2006).
    Article Google Scholar
  20. Fariñas, I., Yoshida, C.K., Backus, C. & Reichardt, L.F. Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078 (1996).
    Article Google Scholar
  21. White, F.A. et al. Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J. Neurosci. 16, 4662–4672 (1996).
    Article CAS Google Scholar
  22. Kurtz, A. et al. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–2649 (1994).
    CAS PubMed Google Scholar
  23. Schreiner, S. et al. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 3271–3281 (2007).
    Article CAS Google Scholar
  24. Taylor, M.K., Yeager, K. & Morrison, S.J. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134, 2435–2447 (2007).
    Article CAS Google Scholar
  25. Woodhoo, A., Dean, C.H., Droggiti, A., Mirsky, R. & Jessen, K.R. The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol. Cell. Neurosci. 25, 30–41 (2004).
    Article CAS Google Scholar
  26. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).
    Article CAS Google Scholar
  27. Fariñas, I., Cano-Jaimez, M., Bellmunt, E. & Soriano, M. Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res. Bull. 57, 809–816 (2002).
    Article Google Scholar
  28. Maro, G.S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7, 930–938 (2004).
    Article CAS Google Scholar
  29. Ernfors, P., Lee, K.F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).
    Article CAS Google Scholar
  30. Tessarollo, L., Vogel, K.S., Palko, M.E., Reid, S.W. & Parada, L.F. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc. Natl. Acad. Sci. USA 91, 11844–11848 (1994).
    Article CAS Google Scholar
  31. Murphy, P. et al. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122, 2847–2857 (1996).
    CAS PubMed Google Scholar
  32. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).
    Article CAS Google Scholar
  33. Hoopfer, E.D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).
    Article CAS Google Scholar
  34. Suzuki, E. & Nakayama, M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp. Cell Res. 313, 3729–3742 (2007).
    Article CAS Google Scholar
  35. Griffin, J.W., George, R. & Ho, T. Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol. 52, 553–560 (1993).
    Article CAS Google Scholar
  36. Hirata, K. & Kawabuchi, M. Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microsc. Res. Tech. 57, 541–547 (2002).
    Article Google Scholar
  37. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).
    Article CAS Google Scholar
  38. Aldskogius, H. & Arvidsson, J. Nerve cell degeneration and death in the trigeminal ganglion of the adult rat following peripheral nerve transection. J. Neurocytol. 7, 229–250 (1978).
    Article CAS Google Scholar
  39. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).
    Article CAS Google Scholar
  40. Fenzi, F., Benedetti, M.D., Moretto, G. & Rizzuto, N. Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch. Ital. Biol. 139, 357–365 (2001).
    CAS PubMed Google Scholar
  41. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol. 6, e61 (2008).
    Article Google Scholar
  42. Ravichandran, K.S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964–974 (2007).
    Article CAS Google Scholar
  43. Reddien, P.W., Cameron, S. & Horvitz, H.R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001).
    Article CAS Google Scholar
  44. Kurant, E., Axelrod, S., Leaman, D. & Gaul, U. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498–509 (2008).
    Article CAS Google Scholar
  45. Ziegenfuss, J.S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signaling. Nature 453, 935–939 (2008).
    Article CAS Google Scholar
  46. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).
    Article CAS Google Scholar
  47. Silva, M.T., do Vale, A. & Dos Santos, N.M. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13, 463–482 (2008).
    Article Google Scholar
  48. Wu, H.H. et al. Autoregulation of neurogenesis by GDF11. Neuron 37, 197–207 (2003).
    Article CAS Google Scholar
  49. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission, but not synaptic development. J. Neurosci. 19, 539–548 (1999).
    Article CAS Google Scholar

Download references