Control of visually guided behavior by distinct populations of spinal projection neurons (original) (raw)
References
Orlovsky, G.N., Deliagina, T.G. & Grillner, S. Neuronal Control of Locomotion (Oxford University Press, New York, 1999). Book Google Scholar
Rossignol, S., Dubuc, R.J. & Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev.86, 89–154 (2006). Article Google Scholar
Zelenin, P.V. Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey. Eur. J. Neurosci.22, 2271–2282 (2005). Article Google Scholar
Deliagina, T.G., Zelenin, P.V. & Orlovsky, G.N. Encoding and decoding of reticulospinal commands. Brain Res. Brain Res. Rev.40, 166–177 (2002). Article Google Scholar
Korn, H. & Faber, D.S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron47, 13–28 (2005). ArticleCAS Google Scholar
Gahtan, E. & Baier, H. Of lasers, mutants and see-through brains: functional neuroanatomy in zebrafish. J. Neurobiol.59, 147–161 (2004). Article Google Scholar
Saint-Amant, L. & Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol.37, 622–632 (1998). ArticleCAS Google Scholar
Budick, S.A. & O'Malley, D.M. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol.203, 2565–2579 (2000). CASPubMed Google Scholar
Burgess, H.A. & Granato, M. Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol.210, 2526–2539 (2007). Article Google Scholar
Kimmel, C.B., Powell, S.L. & Metcalfe, W.K. Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol.205, 112–127 (1982). ArticleCAS Google Scholar
Lee, R.K. & Eaton, R.C. Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J. Comp. Neurol.304, 34–52 (1991). ArticleCAS Google Scholar
O'Malley, D.M., Kao, Y.H. & Fetcho, J.R. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron17, 1145–1155 (1996). ArticleCAS Google Scholar
Metcalfe, W.K., Mendelson, B. & Kimmel, C.B. Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J. Comp. Neurol.251, 147–159 (1986). ArticleCAS Google Scholar
Gahtan, E. & O'Malley, D.M. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J. Comp. Neurol.459, 186–200 (2003). Article Google Scholar
Nissanov, J., Eaton, R.C. & DiDomenico, R. The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res.517, 88–98 (1990). ArticleCAS Google Scholar
Liu, K.S. & Fetcho, J.R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron23, 325–335 (1999). ArticleCAS Google Scholar
Burgess, H.A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci.27, 4984–4994 (2007). ArticleCAS Google Scholar
Gahtan, E., Sankrithi, N., Campos, J.B. & O'Malley, D.M. Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol.87, 608–614 (2002). Article Google Scholar
Briggman, K.L., Abarbanel, H.D. & Kristan, W.B., Jr. Optical imaging of neuronal populations during decision-making. Science307, 896–901 (2005). ArticleCAS Google Scholar
Wu, J.Y., Cohen, L.B. & Falk, C.X. Neuronal activity during different behaviors in Aplysia: a distributed organization? Science263, 820–823 (1994). ArticleCAS Google Scholar
Bosch, T.J., Maslam, S. & Roberts, B.L. Fos-like immunohistochemical identification of neurons active during the startle response of the rainbow trout. J. Comp Neurol.439, 306–314 (2001). ArticleCAS Google Scholar
Zelenin, P.V., Orlovsky, G.N. & Deliagina, T.G. Sensory-motor transformation by individual command neurons. J. Neurosci.27, 1024–1032 (2007). ArticleCAS Google Scholar
Wiersma, C.A. & Ikeda, K. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol.12, 509–525 (1964). ArticleCAS Google Scholar
Pearson, K.G. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci.16, 265–297 (1993). ArticleCAS Google Scholar
Orger, M.B., Smear, M.C., Anstis, S.M. & Baier, H. Perception of fourier and non-fourier motion by larval zebrafish. Nat. Neurosci.3, 1128–1133 (2000). ArticleCAS Google Scholar
Borla, M.A., Palecek, B., Budick, S. & O'Malley, D.M. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav. Evol.60, 207–229 (2002). Article Google Scholar
Euler, T., Detwiler, P.B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature418, 845–852 (2002). ArticleCAS Google Scholar
Chung, S.H., Clark, D.A., Gabel, C.V., Mazur, E. & Samuel, A.D. The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci.7, 30 (2006). Article Google Scholar
Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev.103, 577–644 (2003). ArticleCAS Google Scholar
Leonardo, A. & Fee, M.S. Ensemble coding of vocal control in birdsong. J. Neurosci.25, 652–661 (2005). ArticleCAS Google Scholar
d'Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci.6, 300–308 (2003). ArticleCAS Google Scholar
Bizzi, E., d'Avella, A., Saltiel, P. & Tresch, M. Modular organization of spinal motor systems. Neuroscientist8, 437–442 (2002). ArticleCAS Google Scholar
Gahtan, E. & O'Malley, D.M. Rapid lesioning of large numbers of identified vertebrate neurons: applications in zebrafish. J. Neurosci. Methods108, 97–110 (2001). ArticleCAS Google Scholar
Zottoli, S.J., Newman, B.C., Rieff, H.I. & Winters, D.C. Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus). J. Comp. Physiol. [A]184, 207–218 (1999). ArticleCAS Google Scholar
Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci.25, 9294–9303 (2005). ArticleCAS Google Scholar
Mendelson, B. Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J. Comp. Neurol.251, 172–184 (1986). ArticleCAS Google Scholar
Kimura, Y., Okamura, Y. & Higashijima, S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci.26, 5684–5697 (2006). ArticleCAS Google Scholar
Bhatt, D.H., McLean, D.L., Hale, M.E. & Fetcho, J.R. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron53, 91–102 (2007). ArticleCAS Google Scholar
McLean, D.L., Fan, J., Higashijima, S., Hale, M.E. & Fetcho, J.R. A topographic map of recruitment in spinal cord. Nature446, 71–75 (2007). ArticleCAS Google Scholar
Chong, M. & Drapeau, P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev. Neurobiol.67, 933–947 (2007). Article Google Scholar
Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron45, 941–951 (2005). ArticleCAS Google Scholar
Sato, T., Hamaoka, T., Aizawa, H., Hosoya, T. & Okamoto, H. Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J. Neurosci.27, 5271–5279 (2007). ArticleCAS Google Scholar
Higashijima, S., Masino, M.A., Mandel, G. & Fetcho, J.R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol.90, 3986–3997 (2003). Article Google Scholar
Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L. & Raible, D.W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural crest–derived pigment cell fate. Development126, 3757–3767 (1999). CASPubMed Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar