A topographic map of recruitment in spinal cord (original) (raw)

References

  1. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nature Rev. Neurosci. 4, 573–586 (2003)
    Article CAS Google Scholar
  2. Jankowska, E. Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J. Physiol. (Lond.) 533, 31–40 (2001)
    Article CAS Google Scholar
  3. Kiehn, O. & Butt, S. J. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog. Neurobiol. 70, 347–361 (2003)
    Article CAS Google Scholar
  4. Roberts, A. How does a nervous system produce behaviour? A case study in neurobiology. Sci. Prog. 74, 31–51 (1990)
    CAS PubMed Google Scholar
  5. Stein, P. S., McCullough, M. L. & Currie, S. N. Spinal motor patterns in the turtle. Ann. NY Acad. Sci. 860, 142–154 (1998)
    Article ADS CAS Google Scholar
  6. Combes, D., Merrywest, S. D., Simmers, J. & Sillar, K. T. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis. J. Physiol. (Lond.) 559, 17–24 (2004)
    Article CAS Google Scholar
  7. Fuiman, L. A. & Webb, P. W. Ontogeny of routine swimming activity and performance in Zebra danios (Teleostei, Cyprinidae). Anim. Behav. 36, 250–261 (1988)
    Article Google Scholar
  8. Budick, S. A. & O'Malley, D. M. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol. 203, 2565–2579 (2000)
    CAS PubMed Google Scholar
  9. Muller, U. K. & van Leeuwen, J. L. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J. Exp. Biol. 207, 853–868 (2004)
    Article Google Scholar
  10. Liu, D. W. & Westerfield, M. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming. J. Physiol. (Lond.) 403, 73–89 (1988)
    Article CAS Google Scholar
  11. Myers, P. Z. Spinal motoneurons of the larval zebrafish. J. Comp. Neurol. 236, 555–561 (1985)
    Article ADS CAS Google Scholar
  12. Westerfield, M., McMurray, J. V. & Eisen, J. S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267–2277 (1986)
    Article CAS Google Scholar
  13. Hale, M. E., Ritter, D. A. & Fetcho, J. R. A confocal study of spinal interneurons in living larval zebrafish. J. Comp. Neurol. 437, 1–16 (2001)
    Article CAS Google Scholar
  14. Higashijima, S., Schaefer, M. & Fetcho, J. R. Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 19–37 (2004)
    Article CAS Google Scholar
  15. Ritter, D. A., Bhatt, D. H. & Fetcho, J. R. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J. Neurosci. 21, 8956–8965 (2001)
    Article CAS Google Scholar
  16. Masino, M. A., McLean, D. L. & Fetcho, J. R. Identification of an intersegmental interneuron that may drive slow swimming movements in larval zebrafish. Soc. Neurosci. Abstr. Viewer/Itinerary Planner Program 751.16, (Society for Neuroscience, Washington DC, 2005); 〈http://sfn.scholarone.com/itin2005/〉.
  17. Higashijima, S., Masino, M. A., Mandel, G. & Fetcho, J. R. Engrailed-1 expression marks a primitive class of inhibitory spinal interneuron. J. Neurosci. 24, 5827–5839 (2004)
    Article CAS Google Scholar
  18. Henneman, E., Somjen, G. & Carpenter, D. O. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560–580 (1965)
    Article CAS Google Scholar
  19. Kimura, Y., Okamura, Y. & Higashijima, S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci. 26, 5684–5697 (2006)
    Article CAS Google Scholar
  20. Bhatt, D. H., McLean, D. L., Hale, M. E. & Fetcho, J. R. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron 53, 91–102 (2007)
    Article CAS Google Scholar
  21. Thorsen, D. H., Cassidy, J. J. & Hale, M. E. Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control. J. Exp. Biol. 207, 4175–4183 (2004)
    Article Google Scholar
  22. Fan, J. & Hale, M. E. Excitatory descending spinal interneurons influence the degree of axial bending during startles of larval zebrafish. Soc. Neurosci. Abstr. Viewer/Itinerary Planner Program 751.14, (Society for Neuroscience, Washington DC, 2005); 〈http://sfn.scholarone.com/itin2005/〉.
  23. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000)
    Article CAS Google Scholar
  24. Briscoe, J. et al. Homeobox gene Nkx2. 2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999)
    Article ADS CAS Google Scholar
  25. Fetcho, J. R. A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res. Rev. 434, 243–280 (1987)
    Article CAS Google Scholar
  26. Landmesser, L. The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. (Lond.) 284, 371–389 (1978)
    Article CAS Google Scholar
  27. McHanwell, S. & Biscoe, T. J. The localization of motoneurons supplying the hindlimb muscles of the mouse. Phil. Trans. R. Soc. Lond. B 293, 477–508 (1981)
    Article ADS CAS Google Scholar
  28. Gosgnach, S. et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219 (2006)
    Article ADS CAS Google Scholar
  29. Li, W. C., Higashijima, S., Parry, D. M., Roberts, A. & Soffe, S. R. Primitive roles for inhibitory interneurons in developing frog spinal cord. J. Neurosci. 24, 5840–5848 (2004)
    Article CAS Google Scholar
  30. Drapeau, P., Ali, D. W., Buss, R. R. & Saint-Amant, L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J. Neurosci. Methods 88, 1–13 (1999)
    Article CAS Google Scholar

Download references