Integrins in cancer: biological implications and therapeutic opportunities (original) (raw)
Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol.18, 516–523 (2006). ArticleCASPubMed Google Scholar
Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol.5, 816–826 (2004). ArticleCAS Google Scholar
Assoian, R. K. & Klein, E. A. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol.18, 347–352 (2008). ArticleCASPubMedPubMed Central Google Scholar
Han, S., Khuri, F. R. & Roman, J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res.66, 315–323 (2006). ArticleCASPubMed Google Scholar
Vellon, L., Menendez, J. A. & Lupu, R. αVβ3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene24, 3759–3773 (2005). ArticleCASPubMed Google Scholar
Pytela, R., Pierschbacher, M. D. & Ruoslahti, E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell40, 191–198 (1985). This seminal work provides the first description of an RGD-mediated cell adhesion mechanism. ArticleCASPubMed Google Scholar
Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol.7, 20–31 (2006). ArticleCAS Google Scholar
Zoller, M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Rev. Cancer9, 40–55 (2009). ArticleCAS Google Scholar
Han, J. et al. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr. Biol.16, 1796–1806 (2006). ArticleCASPubMed Google Scholar
Kren, A. et al. Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function. EMBO J.26, 2832–2842 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zutter, M. M., Santoro, S. A., Staatz, W. D. & Tsung, Y. L. Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc. Natl Acad. Sci. USA92, 7411–7415 (1995). ArticleCASPubMedPubMed Central Google Scholar
Matter, M. L. & Ruoslahti, E. A signaling pathway from the α5β1 and αvβ3 integrins that elevates bcl-2 transcription. J. Biol. Chem.276, 27757–27763 (2001). ArticleCASPubMed Google Scholar
Uhm, J. H., Dooley, N. P., Kyritsis, A. P., Rao, J. S. & Gladson, C. L. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin. Cancer Res.5, 1587–1594 (1999). CASPubMed Google Scholar
Aoudjit, F. & Vuori, K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol.152, 633–643 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aoudjit, F. & Vuori, K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene20, 4995–5004 (2001). ArticleCASPubMed Google Scholar
Courter, D. L., Lomas, L., Scatena, M. & Giachelli, C. M. Src kinase activity is required for integrin αVβ3-mediated activation of nuclear factor-κB. J. Biol. Chem.280, 12145–12151 (2005). ArticleCASPubMed Google Scholar
Bao, W. & Stromblad, S. Integrin αv-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. J. Cell Biol.167, 745–756 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hood, J. D., Frausto, R., Kiosses, W. B., Schwartz, M. A. & Cheresh, D. A. Differential αv integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell Biol.162, 933–943 (2003). ArticleCASPubMedPubMed Central Google Scholar
Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G. & Cheresh, D. A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science301, 94–96 (2003). This paper identifies a central role for Raf in protecting endothelial cells from distinct mediators of apoptosis. ArticleCASPubMed Google Scholar
Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med.8, 27–34 (2002). This paper demonstrates that the genetic deletion ofItgb3in mice failed to inhibit, and actually potentiated, angiogenesis. ArticleCASPubMed Google Scholar
Reynolds, A. R. et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res.64, 8643–8650 (2004). ArticleCASPubMed Google Scholar
Petitclerc, E. et al. Integrin αvβ3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res.59, 2724–2730 (1999). CASPubMed Google Scholar
Varner, J. A., Emerson, D. A. & Juliano, R. L. Integrin alpha 5 beta 1 expression negatively regulates cell growth: reversal by attachment to fibronectin. Mol. Biol. Cell6, 725–740 (1995). ArticleCASPubMedPubMed Central Google Scholar
Giancotti, F. G. & Ruoslahti, E. Elevated levels of the α5 β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell60, 849–859 (1990). This study shows that in addition to their pro-tumorigenic effects, integrins can suppress transformation under some conditions. ArticleCASPubMed Google Scholar
Kanamori, M., Vanden Berg, S. R., Bergers, G., Berger, M. S. & Pieper, R. O. Integrin β3 overexpression suppresses tumor growth in a human model of gliomagenesis: implications for the role of β3 overexpression in glioblastoma multiforme. Cancer Res.64, 2751–2758 (2004). ArticleCASPubMed Google Scholar
Danen, E. H., van Kraats, A. A., Cornelissen, I. M., Ruiter, D. J. & van Muijen, G. N. Integrin β3 cDNA transfection into a highly metastatic αv β3-negative human melanoma cell line inhibits invasion and experimental metastasis. Biochem. Biophys. Res. Commun.226, 75–81 (1996). ArticleCASPubMed Google Scholar
Stupack, D. G., Puente, X. S., Boutsaboualoy, S., Storgard, C. M. & Cheresh, D. A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol.155, 459–470 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhao, H., Ross, F. P. & Teitelbaum, S. L. Unoccupied αvβ3 integrin regulates osteoclast apoptosis by transmitting a positive death signal. Mol. Endocrinol.19, 771–780 (2005). ArticleCASPubMed Google Scholar
Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol.13, 555–562 (2001). ArticleCASPubMed Google Scholar
Stupack, D. G. et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature439, 95–99 (2006). This paper demonstrates that tumour invasion and metastasis occurs following resistance to IMD owing to the loss of caspase 8. ArticleCASPubMed Google Scholar
Desgrosellier, J. S., et al. Integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nature Med.15, 1163–1169 (2009). This paper describes a role for unligated integrin αvβ3 in increasing anchorage-independent survival and metastasis through an integrin αvβ3–SRC signalling module. ArticleCASPubMed Google Scholar
Albelda, S. M. et al. Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res.50, 6757–6764 (1990). CASPubMed Google Scholar
Takayama, S. et al. The relationship between bone metastasis from human breast cancer and integrin αvβ3 expression. Anticancer Res.25, 79–83 (2005). CASPubMed Google Scholar
Liapis, H., Flath, A. & Kitazawa, S. Integrin αVβ3 expression by bone-residing breast cancer metastases. Diagn. Mol. Pathol.5, 127–135 (1996). ArticleCASPubMed Google Scholar
Sloan, E. K. et al. Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res.8, R20 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
McCabe, N. P., De, S., Vasanji, A., Brainard, J. & Byzova, T. V. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling. Oncogene26, 6238–6243 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hosotani, R. et al. Expression of integrin αvβ3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas25, e30–35 (2002). ArticlePubMed Google Scholar
Gruber, G. et al. Correlation between the tumoral expression of β3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer92, 41–46 (2005). ArticleCASPubMed Google Scholar
Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol.9, 201–209 (2007). ArticleCASPubMed Google Scholar
Vaillant, F. et al. The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res.68, 7711–7717 (2008). ArticleCASPubMed Google Scholar
Taverna, D., Crowley, D., Connolly, M., Bronson, R. T. & Hynes, R. O. A direct test of potential roles for β3 and β5 integrins in growth and metastasis of murine mammary carcinomas. Cancer Res.65, 10324–10329 (2005). ArticleCASPubMed Google Scholar
Luo, M. et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res.69, 466–474 (2009). ArticleCASPubMedPubMed Central Google Scholar
Samanna, V., Wei, H., Ego-Osuala, D. & Chellaiah, M. A. Alpha-V-dependent outside-in signaling is required for the regulation of CD44 surface expression, MMP-2 secretion, and cell migration by osteopontin in human melanoma cells. Exp. Cell Res.312, 2214–2230 (2006). ArticleCASPubMed Google Scholar
Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nature Rev. Cancer8, 604–617 (2008). ArticleCAS Google Scholar
Ribatti, D. The contribution of Harold F. Dvorak to the study of tumor angiogenesis and stroma generation mechanisms. Endothelium14, 131–135 (2007). ArticleCASPubMed Google Scholar
Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science264, 569–571 (1994). This paper provides the first demonstration that an antagonist to integrin αvβ3 blocks angiogenesis. ArticleCASPubMed Google Scholar
Davis, G. E. Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem. Biophys. Res. Commun.182, 1025–1031 (1992). ArticleCASPubMed Google Scholar
Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science270, 1500–1502 (1995). This paper defines two distinct pathways of angiogenesis that require specific integrin–growth factor receptor pairs. ArticleCASPubMed Google Scholar
Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev.15, 102–111 (2005). ArticleCASPubMed Google Scholar
Garmy-Susini, B. et al. Integrin α4β1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J. Clin. Invest.115, 1542–1551 (2005). This paper describes the importance of integrin-mediated interactions between endothelial cells and pericytes for vascular maturation. ArticleCASPubMedPubMed Central Google Scholar
Fukumura, D. & Jain, R. K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res.74, 72–84 (2007). ArticleCASPubMedPubMed Central Google Scholar
Greenberg, J. I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature456, 809–813 (2008). ArticleCASPubMedPubMed Central Google Scholar
Conti, J. A. et al. The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via αv integrin ligation. Clin. Cancer Res.14, 6405–6413 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhu, C. Q. et al. Integrin α11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc. Natl Acad. Sci. USA104, 11754–11759 (2007). This paper demonstrates a crucial role for integrin α11β1 that is expressed on tumour-associated fibroblasts in tumour progression. ArticleCASPubMedPubMed Central Google Scholar
Taverna, D. et al. Increased primary tumor growth in mice null for β3- or β3/β5-integrins or selectins. Proc. Natl Acad. Sci. USA101, 763–768 (2004). ArticleCASPubMedPubMed Central Google Scholar
Feng, W. et al. The angiogenic response is dictated by β3 integrin on bone marrow-derived cells. J. Cell Biol.183, 1145–1157 (2008). This paper describes the novel observation that integrin αvβ3 expression on bone marrow-derived cells is crucial for angiogenesis that occurs during wound healing and tumour growth. ArticleCASPubMedPubMed Central Google Scholar
Jin, H. et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest.116, 652–662 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jin, H., Su, J., Garmy-Susini, B., Kleeman, J. & Varner, J. Integrin α4β1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res.66, 2146–2152 (2006). ArticleCASPubMed Google Scholar
Bakewell, S. J. et al. Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc. Natl Acad. Sci. USA100, 14205–14210 (2003). ArticleCASPubMedPubMed Central Google Scholar
Felding-Habermann, B., Habermann, R., Saldivar, E. & Ruggeri, Z. M. Role of β3 integrins in melanoma cell adhesion to activated platelets under flow. J. Biol. Chem.271, 5892–5900 (1996). ArticleCASPubMed Google Scholar
Felding-Habermann, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA98, 1853–1858 (2001). ArticleCASPubMedPubMed Central Google Scholar
Trikha, M. et al. Multiple roles for platelet GPIIb/IIIa and αvβ3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res.62, 2824–2833 (2002). CASPubMed Google Scholar
Guo, W. et al. β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell126, 489–502 (2006). This paper provides the first demonstration that oncogenes may cooperate with integrins to initiate tumorigenesis. ArticleCASPubMed Google Scholar
White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell6, 159–170 (2004). ArticleCASPubMed Google Scholar
Lahlou, H. et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc. Natl Acad. Sci. USA104, 20302–20307 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pylayeva, Y. et al. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J. Clin. Invest.119, 252–266 (2009). CASPubMedPubMed Central Google Scholar
Huveneers, S. et al. Integrin αvβ3 controls activity and oncogenic potential of primed c-Src. Cancer Res.67, 2693–2700 (2007). ArticleCASPubMed Google Scholar
Huveneers, S., Arslan, S., van de Water, B., Sonnenberg, A. & Danen, E. H. Integrins uncouple Src-induced morphological and oncogenic transformation. J. Biol. Chem.283, 13243–13251 (2008). ArticleCASPubMed Google Scholar
Shimizu, H., Seiki, T., Asada, M., Yoshimatsu, K. & Koyama, N. α6β1 integrin induces proteasome-mediated cleavage of erbB2 in breast cancer cells. Oncogene22, 831–839 (2003). ArticleCASPubMed Google Scholar
Borges, E., Jan, Y. & Ruoslahti, E. Platelet-derived growth factor receptor β and vascular endothelial growth factor receptor 2 bind to the β3 integrin through its extracellular domain. J. Biol. Chem.275, 39867–39873 (2000). ArticleCASPubMed Google Scholar
Schneller, M., Vuori, K. & Ruoslahti, E. αvβ3 integrin associates with activated insulin and PDGFβ receptors and potentiates the biological activity of PDGF. EMBO J.16, 5600–5607 (1997). ArticleCASPubMedPubMed Central Google Scholar
Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell107, 643–654 (2001). This paper identifies a crucial crosstalk mechanism between integrin α6β4 and MET that increases HGF-induced tumour cell invasion. ArticleCASPubMed Google Scholar
Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol.135, 1633–1642 (1996). This paper describes the important collaboration between growth factors and integrins for increased activation of growth factor receptors and potentiation of downstream signalling through MAPK. ArticleCASPubMed Google Scholar
Caswell, P. T. et al. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol.183, 143–55 (2008). ArticleCASPubMedPubMed Central Google Scholar
Spangenberg, C. et al. ERBB2-mediated transcriptional up-regulation of the α5β1 integrin fibronectin receptor promotes tumor cell survival under adverse conditions. Cancer Res.66, 3715–3725 (2006). ArticleCASPubMed Google Scholar
Yoon, S. O., Shin, S. & Lipscomb, E. A. A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the α6β4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res.66, 2732–2739 (2006). ArticleCASPubMed Google Scholar
Ning, Y., Buranda, T. & Hudson, L. G. Activated epidermal growth factor receptor induces integrin α2 internalization via caveolae/raft-dependent endocytic pathway. J. Biol. Chem.282, 6380–6387 (2007). ArticleCASPubMed Google Scholar
Ning, Y. et al. Down-regulation of integrin α2 surface expression by mutant epidermal growth factor receptor (EGFRvIII) induces aberrant cell spreading and focal adhesion formation. Cancer Res.65, 9280–9286 (2005). ArticleCASPubMed Google Scholar
Ignotz, R. A. & Massague, J. Cell adhesion protein receptors as targets for transforming growth factor-β action. Cell51, 189–197 (1987). ArticleCASPubMed Google Scholar
Wei, Y. Y. et al. Osteoblasts-derived TGF-β1 enhance motility and integrin upregulation through Akt, ERK, and NF-κB-dependent pathway in human breast cancer cells. Mol. Carcinog.47, 526–537 (2008). ArticleCASPubMed Google Scholar
Wang, D. et al. Control of type II transforming growth factor-β receptor expression by integrin ligation. J. Biol. Chem.274, 12840–12847 (1999). ArticleCASPubMed Google Scholar
Engl, T. et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia8, 290–301 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sun, Y. X. et al. Expression and activation of αv β3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate67, 61–73 (2007). ArticleCASPubMed Google Scholar
Grzesiak, J. J., Smith, K. C., Burton, D. W., Deftos, L. J. & Bouvet, M. Integrin-mediated laminin-1 adhesion upregulates CXCR4 and IL-8 expression in pancreatic cancer cells. Surgery141, 804–814 (2007). ArticlePubMed Google Scholar
Wang, S. E. et al. Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res.69, 475–482 (2009). ArticleCASPubMedPubMed Central Google Scholar
Klemke, R. L., Yebra, M., Bayna, E. M. & Cheresh, D. A. Receptor tyrosine kinase signaling required for integrin αvβ5-directed cell motility but not adhesion on vitronectin. J. Cell Biol.127, 859–866 (1994). ArticleCASPubMed Google Scholar
Brooks, P. C. et al. Insulin-like growth factor receptor cooperates with integrin αvβ5 to promote tumor cell dissemination in vivo. J. Clin. Invest.99, 1390–1398 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ricono, J. M. et al. Specific cross-talk between epidermal growth factor receptor and integrin αvβ5 promotes carcinoma cell invasion and metastasis. Cancer Res.69, 1383–1391 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wayner, E. A., Orlando, R. A. & Cheresh, D. A. Integrins αvβ3 and αvβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J. Cell Biol.113, 919–929 (1991). ArticleCASPubMed Google Scholar
Pouliot, N., Nice, E. C. & Burgess, A. W. Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via α3β1 and α6β4 integrins. Exp. Cell Res.266, 1–10 (2001). ArticleCASPubMed Google Scholar
Yang, C. et al. Integrin α1β1 and α2β1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res.63, 8312–8317 (2003). CASPubMed Google Scholar
Moro, L. et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J.17, 6622–6632 (1998). ArticleCASPubMedPubMed Central Google Scholar
Moro, L. et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem.277, 9405–9414 (2002). ArticleCASPubMed Google Scholar
Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res.65, 10674–10679 (2005). ArticleCASPubMed Google Scholar
Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. J. Cell Biol.175, 993–1003 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chung, J., Yoon, S. O., Lipscomb, E. A. & Mercurio, A. M. The Met receptor and α6β4 integrin can function independently to promote carcinoma invasion. J. Biol. Chem.279, 32287–32293 (2004). ArticleCASPubMed Google Scholar
Crouch, S., Spidel, C. S. & Lindsey, J. S. HGF and ligation of αvβ5 integrin induce a novel, cancer cell-specific gene expression required for cell scattering. Exp. Cell Res.292, 274–287 (2004). ArticleCASPubMed Google Scholar
Sridhar, S. C. & Miranti, C. K. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene25, 2367–2378 (2006). ArticleCASPubMed Google Scholar
Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell96, 319–328 (1999). ArticleCASPubMed Google Scholar
Ludbrook, S. B., Barry, S. T., Delves, C. J. & Horgan, C. M. The integrin αvβ3 is a receptor for the latency-associated peptides of transforming growth factors β1 and β3. Biochem. J.369, 311–318 (2003). ArticleCASPubMedPubMed Central Google Scholar
Marsh, D. et al. αvβ6 Integrin promotes the invasion of morphoeic basal cell carcinoma through stromal modulation. Cancer Res.68, 3295–3303 (2008). ArticleCASPubMed Google Scholar
Van Aarsen, L. A. et al. Antibody-mediated blockade of integrin αvβ6 inhibits tumor progression in vivo by a transforming growth factor-β-regulated mechanism. Cancer Res.68, 561–570 (2008). ArticlePubMedCAS Google Scholar
Bates, R. C. et al. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest.115, 339–347 (2005). ArticleCASPubMedPubMed Central Google Scholar
Galliher, A. J. & Schiemann, W. P. β3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res.8, R42 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Galliher, A. J. & Schiemann, W. P. Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res.67, 3752–3758 (2007). ArticleCASPubMed Google Scholar
Fransvea, E., Mazzocca, A., Antonaci, S. & Giannelli, G. Targeting transforming growth factor (TGF)-βRI inhibits activation of β1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology49, 839–850 (2009). ArticleCASPubMed Google Scholar
Mahabeleshwar, G. H., Feng, W., Reddy, K., Plow, E. F. & Byzova, T. V. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res.101, 570–580 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hood, J. D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science296, 2404–2407 (2002). This paper demonstrates an essential role for RAF1 in angiogenesis and provides the first demonstration of the effectiveness of integrin-targeted therapeutic delivery to the tumour vasculature. ArticleCASPubMed Google Scholar
Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell6, 851–860 (2000). CASPubMed Google Scholar
Nikolopoulos, S. N., Blaikie, P., Yoshioka, T., Guo, W. & Giancotti, F. G. Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell6, 471–483 (2004). ArticleCASPubMed Google Scholar
Cardones, A. R., Murakami, T. & Hwang, S. T. CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via β1 integrin. Cancer Res.63, 6751–6757 (2003). CASPubMed Google Scholar
Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N. & Burger, M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene24, 4462–4471 (2005). ArticleCASPubMed Google Scholar
Brooks, P. C. et al. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest.96, 1815–1822 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mulgrew, K. et al. Direct targeting of αvβ3 integrin on tumor cells with a monoclonal antibody, Abegrin. Mol. Cancer Ther.5, 3122–3129 (2006). ArticleCASPubMed Google Scholar
Gramoun, A. et al. Effects of Vitaxin, a novel therapeutic in trial for metastatic bone tumors, on osteoclast functions in vitro. J. Cell Biochem.102, 341–352 (2007). ArticleCASPubMed Google Scholar
Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res.6, 3056–3061 (2000). CASPubMed Google Scholar
Delbaldo, C. et al. Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Invest. New Drugs26, 35–43 (2008). ArticleCASPubMed Google Scholar
McNeel, D. G. et al. Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin. Cancer Res.11, 7851–7860 (2005). ArticleCASPubMed Google Scholar
Hersey, P. S. et al. A phase II, randomized, open-label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human alpha v beta 3 (avb3) integrin, ± dacarbazine (DTIC) in patients with metastatic melanoma (MM). J. Clin. Oncol., 2005 ASCO Annual Meeting Proceedings. Vol. 23, No. 16S, Part I of II (June 1 Supplement), 2005: 7507.
Trikha, M. et al. CNTO 95, a fully human monoclonal antibody that inhibits αv integrins, has antitumor and antiangiogenic activity in vivo. Int. J. Cancer110, 326–335 (2004). ArticleCASPubMed Google Scholar
Chen, Q. et al. CNTO 95, a fully human anti αv integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin. Exp. Metastasis25, 139–148 (2008). ArticleCASPubMed Google Scholar
Martin, P. L. et al. Absence of adverse effects in cynomolgus macaques treated with CNTO 95, a fully human anti-alphav integrin monoclonal antibody, despite widespread tissue binding. Clin. Cancer Res.11, 6959–6965 (2005). ArticleCASPubMed Google Scholar
Mullamitha, S. A. et al. Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin. Cancer Res.13, 2128–2135 (2007). ArticleCASPubMed Google Scholar
Smith, J. W., Ruggeri, Z. M., Kunicki, T. J. & Cheresh, D. A. Interaction of integrins αvβ3 and glycoprotein IIb-IIIa with fibrinogen. Differential peptide recognition accounts for distinct binding sites. J. Biol. Chem.265, 12267–12271 (1990). CASPubMed Google Scholar
Beekman, K. W. et al. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin. Genitourin Cancer4, 299–302 (2006). ArticleCASPubMed Google Scholar
Nabors, L. B. et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol.25, 1651–1657 (2007). ArticleCASPubMed Google Scholar
MacDonald, T. J. et al. Phase I clinical trial of cilengitide in children with refractory brain tumors: pediatric brain tumor consortium study PBTC-012. J. Clin. Oncol.26, 919–924 (2008). ArticleCASPubMed Google Scholar
Reardon, D. A. et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol.26, 5610–5617 (2008). This study shows the efficacy of cilengitide in a Phase II study of recurrent glioblastoma and provides the basis for the ongoing Phase III trial with this agent. ArticleCASPubMed Google Scholar
Stupp, R. et al. Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (GBM). J. Clin, Oncol., 2007 ASCO Annual Meeting Proceedings. Vol 25, No. 18S Part 1 (June 20 Supplement), 2007: 2000.
Odekon, L. E., Frewin, M. B., Del Vecchio, P., Saba, T. M. & Gudewicz, P. W. Fibronectin fragments released from phorbol ester-stimulated pulmonary artery endothelial cell monolayers promote neutrophil chemotaxis. Immunology74, 114–120 (1991). CASPubMedPubMed Central Google Scholar
Legler, D. F., Wiedle, G., Ross, F. P. & Imhof, B. A. Superactivation of integrin αvβ3 by low antagonist concentrations. J. Cell Sci.114, 1545–1553 (2001). CASPubMed Google Scholar
Aznavoorian, S., Stracke, M. L., Krutzsch, H., Schiffmann, E. & Liotta, L. A. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol.110, 1427–1438 (1990). ArticleCASPubMed Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). ArticleCASPubMedPubMed Central Google Scholar
Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15, 220–231 (2009). ArticleCASPubMedPubMed Central Google Scholar
MacDonald, T. J. et al. Preferential susceptibility of brain tumors to the antiangiogenic effects of an αv integrin antagonist. Neurosurgery48, 151–157 (2001). CASPubMed Google Scholar
Yamada, S. et al. Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery59, 1304–1312 (2006). ArticlePubMed Google Scholar
Gladson, C. L. & Cheresh, D. A. Glioblastoma expression of vitronectin and the αvβ 3 integrin. Adhesion mechanism for transformed glial cells. J. Clin. Invest.88, 1924–1932 (1991). Reveals a crucial role for integrin αvβ3 and its ligand vitronectin for adhesion and the malignant progression of glioblastoma and may help explain the role of cilengitide in patients with brain cancer. ArticleCASPubMedPubMed Central Google Scholar
Park, C. C. et al. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res.66, 1526–1535 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bhaskar, V. et al. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J. Transl. Med.5, 61 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Bhaskar, V. et al. Volociximab, a chimeric integrin α5β1 antibody, inhibits the growth of VX2 tumors in rabbits. Invest. New Drugs26, 7–12 (2008). ArticleCASPubMed Google Scholar
Ricart, A. D. et al. Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin. Cancer Res.14, 7924–7929 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kuwada, S. K. Drug evaluation: Volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr. Opin. Mol. Ther.9, 92–98 (2007). CASPubMed Google Scholar
Khalili, P. et al. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol. Cancer Ther.5, 2271–2280 (2006). ArticleCASPubMed Google Scholar
Stoeltzing, O. et al. Inhibition of integrin α5β1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int. J. Cancer104, 496–503 (2003). ArticleCASPubMed Google Scholar
Cianfrocca, M. E. et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours. Br. J. Cancer94, 1621–1626 (2006). ArticleCASPubMedPubMed Central Google Scholar
Harms, J. F. et al. A small molecule antagonist of the αvβ3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin. Exp. Metastasis21, 119–128 (2004). ArticleCASPubMed Google Scholar
Reinmuth, N. et al. αvβ3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res.63, 2079–2087 (2003). CASPubMed Google Scholar
Zhao, Y. et al. Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res.67, 5821–5830 (2007). ArticleCASPubMed Google Scholar
Shannon, K. E. et al. Anti-metastatic properties of RGD-peptidomimetic agents S137 and S247. Clin. Exp. Metastasis21, 129–138 (2004). ArticleCASPubMed Google Scholar
Li, J. et al. Antisense integrin αV and β3 gene therapy suppresses subcutaneously implanted hepatocellular carcinomas. Dig. Liver Dis.39, 557–565 (2007). ArticleCASPubMed Google Scholar
Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by αVβ3-targeted magnetic resonance imaging. Nature Med.4, 623–626 (1998). ArticleCASPubMed Google Scholar
Cai, W. et al. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Res.66, 9673–9681 (2006). ArticleCASPubMed Google Scholar
Winter, P. M. et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res.63, 5838–5843 (2003). CASPubMed Google Scholar
Leong-Poi, H., Christiansen, J., Klibanov, A. L., Kaul, S. & Lindner, J. R. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation107, 455–460 (2003). ArticleCASPubMed Google Scholar
Chen, X. et al. MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol. Imaging Biol.6, 350–359 (2004). ArticlePubMed Google Scholar
Chen, X. et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur. J. Nucl. Med. Mol. Imaging31, 1081–1089 (2004). ArticleCASPubMed Google Scholar
Zhang, C. et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res.67, 1555–1562 (2007). ArticleCASPubMed Google Scholar
Bach-Gansmo, T., Bogsrud, T. V. & Skretting, A. Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and (99m)Tc-labelled NC100692. Clin. Physiol. Funct. Imaging28, 235–239 (2008). ArticlePubMed Google Scholar
Bach-Gansmo, T. et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J. Nucl. Med.47, 1434–1439 (2006). CASPubMed Google Scholar
Haubner, R. et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med.2, e70 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Murphy, E. A. et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl Acad. Sci. USA105, 9343–9348 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. et al. Distinct FAK-Src activation events promote α5β1 and α4β1 integrin-stimulated neuroblastoma cell motility. Oncogene27, 1439–1448 (2008). ArticleCASPubMed Google Scholar
White, D. P., Caswell, P. T. & Norman, J. C. αvβ3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol.177, 515–525 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fournier, A. K. et al. Rac-dependent cyclin D1 gene expression regulated by cadherin- and integrin-mediated adhesion. J. Cell Sci.121, 226–233 (2008). ArticleCASPubMed Google Scholar
Carrano, A. C. & Pagano, M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J. Cell Biol.153, 1381–1390 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hsu, M. Y. et al. Adenoviral gene transfer of β3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am. J. Pathol.153, 1435–1442 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hieken, T. J., Ronan, S. G., Farolan, M., Shilkaitis, A. L. & Das Gupta, T. K. Molecular prognostic markers in intermediate-thickness cutaneous malignant melanoma. Cancer85, 375–382 (1999). ArticleCASPubMed Google Scholar
Danen, E. H. et al. Emergence of α5β1 fibronectin- and αvβ3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology24, 249–256 (1994). ArticleCASPubMed Google Scholar
Nip, J., Shibata, H., Loskutoff, D. J., Cheresh, D. A. & Brodt, P. Human melanoma cells derived from lymphatic metastases use integrin αvβ3 to adhere to lymph node vitronectin. J. Clin. Invest.90, 1406–1413 (1992). ArticleCASPubMedPubMed Central Google Scholar
Diaz, L. K. et al. β4 integrin subunit gene expression correlates with tumor size and nuclear grade in early breast cancer. Mod. Pathol.18, 1165–1175 (2005). ArticleCASPubMed Google Scholar
Friedrichs, K. et al. High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res.55, 901–906 (1995). CASPubMed Google Scholar
Slack-Davis, J. K., Atkins, K. A., Harrer, C., Hershey, E. D. & Conaway, M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res.69, 1469–1476 (2009). ArticleCASPubMed Google Scholar
Landen, C. N. et al. Tumor-selective response to antibody-mediated targeting of αvβ3 integrin in ovarian cancer. Neoplasia10, 1259–1267 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hazelbag, S. et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol.212, 316–324 (2007). ArticleCASPubMed Google Scholar
Bello, L. et al. αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery49, 380–389 (2001). CASPubMed Google Scholar
Adachi, M. et al. Significance of integrin α5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin. Cancer Res.6, 96–101 (2000). CASPubMed Google Scholar
Winter, P. M. et al. Minute dosages of ανβ3-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J.22, 2758–2767 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ong, H. T. et al. Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol. Ther.17, 1012–1021 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cao, L. et al. Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature. Mol. Cancer Ther.7, 851–861 (2008). ArticleCASPubMed Google Scholar
Pramanik, D. et al. Lipopeptide with a RGDK tetrapeptide sequence can selectively target genes to proangiogenic α5β1 integrin receptor and mouse tumor vasculature. J. Med. Chem.51, 7298–7302 (2008). ArticleCASPubMed Google Scholar
Dijkgraaf, I. et al. αvβ3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int. J. Cancer120, 605–610 (2007). ArticleCASPubMed Google Scholar
Janssen, M. L. et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res.62, 6146–6151 (2002). CASPubMed Google Scholar
Veeravagu, A. et al. Integrin αvβ3-targeted radioimmunotherapy of glioblastoma multiforme. Clin. Cancer Res.14, 7330–7339 (2008). ArticleCASPubMed Google Scholar
Chen, Q. et al. αv integrin-targeted immunoconjugates regress established human tumors in xenograft models. Clin. Cancer Res.13, 3689–3695 (2007). ArticleCASPubMed Google Scholar