UVA1 is skin deep: molecular and clinical implications (original) (raw)
References
C. A. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Sol. Energy, 1995, 71(5), 325–346. Article Google Scholar
C. A. Gueymard, SMARTS, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment, Technical Paper FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, FL, 1995. Google Scholar
A. R. D. Smedley, et al., Total ozone and surface UV trends in the United Kingdom: 1979–2008, Int. J. Climatol., 2012, 32(3), 338–346. Article Google Scholar
CIE Standard. Erythema reference action spectrum and standard erythema dose. 1998 (CIE S 007/E-1998, Vienna: Commision Internationale de l‘Eclairage). Google Scholar
S. Seite, et al., Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review, Br. J. Dermatol., 2010, 163(5), 903–914. ArticleCAS Google Scholar
D. A. Kelly, et al., Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-induced suppression of cutaneous cell-mediated immunity, J. Exp. Med., 2000, 191(3), 561–566. ArticleCAS Google Scholar
B. L. Diffey, et al., The standard erythema dose: a new photobiological concept, Photodermatol. Photoimmunol. Photomed., 1997, 13 1–2, 64–66. ArticleCAS Google Scholar
G. I. Harrison, and A. R. Young, Ultraviolet radiation-induced erythema in human skin, Methods, 2002, 28(1), 14–19. ArticleCAS Google Scholar
D. E. Godar, Worldwide increasing incidences of cutaneous malignant melanoma, J. Skin Cancer, 2011, 2011, 858425. Article Google Scholar
F. R. de Gruijl, et al., Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53(1), 53–60. Google Scholar
A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365 nm) radiation: the dose–time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18(5), 1013–1020. Article Google Scholar
J. J. DiGiovanna, and K. H. Kraemer, Shining a light on xeroderma pigmentosum, J. Invest. Dermatol., 2012, 132 3 Pt 2, 785–796. ArticleCAS Google Scholar
P. T. Bradford, et al., Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair, J. Med. Genet., 2011, 48(3), 168–176. Article Google Scholar
N. M. Wikonkal, and D. E. Brash, Ultraviolet radiation induced signature mutations in photocarcinogenesis, J. Invest. Dermatol. Symp. Proc., 1999, 4(1), 6–10. ArticleCAS Google Scholar
J. Moan, A. C. Porojnicu, and A. Dahlback, Ultraviolet radiation and malignant melanoma, Adv. Exp. Med. Biol., 2008, 624, 104–116. Article Google Scholar
J. Moan, et al., UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden, Photochem. Photobiol. Sci., 2012, 11(1), 191–198. ArticleCAS Google Scholar
F. El Ghissassi, et al., A review of human carcinogens–part D: radiation, Lancet Oncol., 2009, 10(8), 751–752. Article Google Scholar
J. F. Dore, and M. C. Chignol, Tanning salons and skin cancer, Photochem. Photobiol. Sci., 2012, 11(1), 30–37. ArticleCAS Google Scholar
International Agency for Research on Cancer Working Group on artificial ultraviolet (UV) light and skin cancer, The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review, Int. J. Cancer, 2007, 120(5), 1116–1122. Google Scholar
M. D. Evans, M. Dizdaroglu, and M. S. Cooke, Oxidative DNA damage and disease: induction, repair and significance, Mutat. Res., 2004, 567(1), 1–61. ArticleCAS Google Scholar
G. M. Halliday, et al., UV-A fingerprint mutations in human skin cancer, Photochem. Photobiol., 2005, 81(1), 3–8. ArticleCAS Google Scholar
N. S. Agar, et al., The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101(14), 4954–4959. ArticleCAS Google Scholar
A. Fourtanier, D. Moyal, and S. Seite, UVA filters in sun-protection products: regulatory and biological aspects, Photochem. Photobiol. Sci., 2012, 11(1), 81–89. ArticleCAS Google Scholar
F. P. Gasparro, Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy, Environ. Health Perspect., 2000, 108 Suppl 1, 71–78. CAS Google Scholar
A. R. Young, et al., A sunscreen‘s labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study, J. Invest. Dermatol., 2010, 130(10), 2457–2462. ArticleCAS Google Scholar
A. C. Kerr, et al., Ultraviolet A1 phototherapy: a British photodermatology group workshop report, Clin. Exp. Dermatol., 2012, 37, 219–226. ArticleCAS Google Scholar
A. R. Young, Chromophores in human skin, Phys. Med. Biol., 1997, 42(5), 789–802. ArticleCAS Google Scholar
J. L. Ravanat, T. Douki, and J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol., B, 2001, 63 1–3, 88–102. ArticleCAS Google Scholar
J. Cadet, et al., Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8(7), 903–911. ArticleCAS Google Scholar
J. Cadet, E. Sage, and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571 1–2, 3–17. ArticleCAS Google Scholar
G. P. Pfeifer, and A. Besaratinia, UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer, Photochem. Photobiol. Sci., 2012, 11(1), 90–97. ArticleCAS Google Scholar
S. Mouret, et al., Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(37), 13765–13770. ArticleCAS Google Scholar
A. R. Young, et al., The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema, J. Invest. Dermatol., 1998, 111(6), 982–988. ArticleCAS Google Scholar
E. Sage, P. M. Girard, and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11(1), 74–80. ArticleCAS Google Scholar
A. Tewari, R. P. Sarkany, and A. R. Young, UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo, J. Invest. Dermatol., 2011, 132, 394–400. Article Google Scholar
T. M. Runger, and U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol. Photoimmunol. Photomed., 2008, 24(1), 2–10. ArticleCAS Google Scholar
R. R. Anderson, and J. A. Parrish, The optics of human skin, J. Invest. Dermatol., 1981, 77(1), 13–19. ArticleCAS Google Scholar
M. J. van Gemert, et al., Skin optics, IEEE Trans. Biomed. Eng., 1989, 36(12), 1146–1154. Article Google Scholar
W. A. Bruls, et al., Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths, Photochem. Photobiol., 1984, 40(4), 485–494. ArticleCAS Google Scholar
X. X. Huang, F. Bernerd, and G. M. Halliday, Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin, Am. J. Pathol., 2009, 174(4), 1534–1543. ArticleCAS Google Scholar
V. Lhiaubet-Vallet, et al., Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA, J. Phys. Chem. B, 2007, 111(25), 7409–7414. ArticleCAS Google Scholar
K. S. Robinson, et al., Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells, Toxicol. in Vitro, 2010, 24(4), 1126–1132. ArticleCAS Google Scholar
T. Douki, et al., Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42(30), 9221–9226. ArticleCAS Google Scholar
B. Epe, DNA damage spectra induced by photosensitization, Photochem. Photobiol. Sci., 2012, 11(1), 98–106. ArticleCAS Google Scholar
Y. Jiang, et al., UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96(3), 1151–1158. ArticleCAS Google Scholar
S. Mouret, et al., UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8(7), 1706–1711. ArticleCAS Google Scholar
C. Kielbassa, L. Roza, and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18(4), 811–816. ArticleCAS Google Scholar
W. Baumler, et al., UVA and endogenous photosensitizers–the detection of singlet oxygen by its luminescence, Photochem. Photobiol. Sci., 2012, 11(1), 107–117. Article Google Scholar
J. L. Ravanat, et al., Singlet oxygen induces oxidation of cellular DNA, J. Biol. Chem., 2000, 275(51), 40601–4. ArticleCAS Google Scholar
S. Basu-Modak, and R. M. Tyrrell, Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene, Cancer Res., 1993, 53(19), 4505–4510. CAS Google Scholar
Y. Hattori, et al., 8-Hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure, J. Invest. Dermatol., 1996, 107(5), 733–737. ArticleCAS Google Scholar
S. Liardet, et al., Protection against pyrimidine dimers, p53, and 8-hydroxy-2′-deoxyguanosine expression in ultraviolet-irradiated human skin by sunscreens: difference between UVB + UVA and UVB alone sunscreens, J. Invest. Dermatol., 2001, 117(6), 1437–1441. ArticleCAS Google Scholar
M. S. Cooke, et al., Induction and excretion of ultraviolet-induced 8-oxo-2′-deoxyguanosine and thymine dimers in vivo: implications for PUVA, J. Invest. Dermatol., 2001, 116(2), 281–285. ArticleCAS Google Scholar
M. Auletta, et al., Effect of cutaneous hypoxia upon erythema and pigment responses to UVA, UVB, and PUVA (8-MOP + UVA) in human skin, J. Invest. Dermatol., 1986, 86(6), 649–652. ArticleCAS Google Scholar
A. Anders, et al., Action spectrum for erythema in humans investigated with dye lasers, Photochem. Photobiol., 1995, 61(2), 200–205. ArticleCAS Google Scholar
R. D. Ley, Photoreactivation of UV-induced pyrimidine dimers and erythema in the marsupial Monodelphis domestica, Proc. Natl. Acad. Sci. U. S. A., 1985, 82(8), 2409–2411. ArticleCAS Google Scholar
L. M. Coussens, and Z. Werb, Inflammation and cancer, Nature, 2002, 420(6917), 860–867. ArticleCAS Google Scholar
A. Mantovani, et al., Cancer-related inflammation, Nature, 2008, 454(7203), 436–444. ArticleCAS Google Scholar
R. P. Gallagher, et al., Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer, I. Basal cell carcinoma, Arch. Dermatol., 1995, 131(2), 157–163. ArticleCAS Google Scholar
H. Fassihi, Spotlight on ‘xeroderma pigmentosum’, Photochem. Photobiol. Sci., 2013 10.1039/C2PP25267H. Google Scholar
D. B. Yarosh, DNA repair, immunosuppression, and skin cancer, Cutis, 2004, 74 5 Suppl, 10–13. Google Scholar
J. Kibitel, et al., UV-DNA damage in mouse and human cells induces the expression of tumor necrosis factor alpha, Photochem. Photobiol., 1998, 67(5), 541–546. ArticleCAS Google Scholar
A. Tewari, et al., Human erythema and matrix metalloproteinase-1 mRNA induction, in vivo, share an action spectrum which suggests common chromophores, Photochem. Photobiol. Sci., 2012, 11(1), 216–223. ArticleCAS Google Scholar
A. A. Vink, D. B. Yarosh, and M. L. Kripke, Chromophore for UV-induced immunosuppression: DNA, Photochem. Photobiol., 1996, 63(4), 383–386. ArticleCAS Google Scholar
M. Norval, Chromophore for UV-induced immunosuppression: urocanic acid, Photochem. Photobiol., 1996, 63(4), 386–390. ArticleCAS Google Scholar
D. P. Steenvoorden, G. Beijersbergen van Henegouwen, Protection against UV-induced systemic immunosuppression in mice by a single topical application of the antioxidant vitamins C and E, Int. J. Radiat. Biol., 1999, 75(6), 747–755. ArticleCAS Google Scholar
S. Widyarini, et al., Photoimmune protective effect of the phytoestrogenic isoflavonoid equol is partially due to its antioxidant activities, Photochem. Photobiol. Sci., 2012, 11(7), 1186–1192. ArticleCAS Google Scholar
R. D. Ley, and V. E. Reeve, Chemoprevention of ultraviolet radiation-induced skin cancer, Environ. Health Perspect., 1997, 105 Suppl 4, 981–984. CAS Google Scholar
J. F. Zhao, et al., Green tea protects against psoralen plus ultraviolet A-induced photochemical damage to skin, J. Invest. Dermatol., 1999, 113(6), 1070–1075. ArticleCAS Google Scholar
E. D. Pleasance, et al., A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2010, 463(7278), 191–196. ArticleCAS Google Scholar
D. L. Mitchell, and R. S. Nairn, The biology of the (6–4) photoproduct, Photochem. Photobiol., 1989, 49(6), 805–819. ArticleCAS Google Scholar
V. J. Bykov, et al., In situ repair of cyclobutane pyrimidine dimers and 6–4 photoproducts in human skin exposed to solar simulating radiation, J. Invest. Dermatol., 1999, 112(3), 326–331. ArticleCAS Google Scholar
H. Ikehata, and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52(2), 115–125. ArticleCAS Google Scholar
J. Jans, et al., Powerful skin cancer protection by a CPD-photolyase transgene, Curr. Biol., 2005, 15(2), 105–115. ArticleCAS Google Scholar
C. I. Kowalczuk, et al., Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation, Int. J. Radiat. Biol., 2006, 82(11), 781–792. ArticleCAS Google Scholar
D. Mitchell, and A. Fernandez, The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma, Photochem. Photobiol. Sci., 2012, 11(1), 69–73. ArticleCAS Google Scholar
D. E. Godar, R. J. Landry, and A. D. Lucas, Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma, Med. Hypotheses, 2009, 72(4), 434–443. ArticleCAS Google Scholar
A. Besaratinia, et al., DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(29), 10058–10063. ArticleCAS Google Scholar
A. Besaratinia, et al., G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet a radiation in mammalian cells, Biochemistry, 2004, 43(25), 8169–8177. ArticleCAS Google Scholar
A. Besaratinia, S. I. Kim, and G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22(7), 2379–2392. ArticleCAS Google Scholar
P. J. Rochette, et al., UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine–thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31(11), 2786–2794. ArticleCAS Google Scholar
E. A. Drobetsky, J. Turcotte, and A. Chateauneuf, A role for ultraviolet A in solar mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 1995, 92(6), 2350–2354. ArticleCAS Google Scholar
U. P. Kappes, et al., Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126(3), 667–675. ArticleCAS Google Scholar
U. P. Kappes, and T. M. Runger, No major role for 7,8-dihydro-8-oxoguanine in ultraviolet light-induced mutagenesis, Radiat. Res., 2005, 164 4 Pt 1, 440–445. ArticleCAS Google Scholar
F. P. Noonan, et al., Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment, Nat. Commun., 2012, 3, 884. Article Google Scholar
S. Mouret, A. Forestier, and T. Douki, The specificity of UVA-induced DNA damage in human melanocytes, Photochem. Photobiol. Sci., 2012, 11(1), 155–162. ArticleCAS Google Scholar
O. Su, et al., Effectiveness of medium-dose ultraviolet A1 phototherapy in localized scleroderma, Int. J. Dermatol., 2011, 50(8), 1006–1013. Article Google Scholar
C. Andres, et al., Successful ultraviolet A1 phototherapy in the treatment of localized scleroderma: a retrospective and prospective study, Br. J. Dermatol., 2010, 162(2), 445–447. ArticleCAS Google Scholar
T. Gambichler, et al., Medium-dose ultraviolet (UV) A1 vs. narrowband UVB phototherapy in atopic eczema: a randomized crossover study, Br. J. Dermatol., 2009, 160(3), 652–658. ArticleCAS Google Scholar
A. C. Kerr, et al., Ultraviolet A1 phototherapy: a British Photodermatology Group workshop report, Clin. Exp. Dermatol., 2012, 37(3), 219–226. ArticleCAS Google Scholar
M. Grachtchouk, et al., Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations, J. Clin. Invest., 2011, 121(5), 1768–1781. ArticleCAS Google Scholar