UVA1 is skin deep: molecular and clinical implications (original) (raw)

References

  1. C. A. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Sol. Energy, 1995, 71(5), 325–346.
    Article Google Scholar
  2. C. A. Gueymard, SMARTS, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment, Technical Paper FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, FL, 1995.
    Google Scholar
  3. A. R. D. Smedley, et al., Total ozone and surface UV trends in the United Kingdom: 1979–2008, Int. J. Climatol., 2012, 32(3), 338–346.
    Article Google Scholar
  4. CIE Standard. Erythema reference action spectrum and standard erythema dose. 1998 (CIE S 007/E-1998, Vienna: Commision Internationale de l‘Eclairage).
    Google Scholar
  5. S. Seite, et al., Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review, Br. J. Dermatol., 2010, 163(5), 903–914.
    Article CAS Google Scholar
  6. D. A. Kelly, et al., Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-induced suppression of cutaneous cell-mediated immunity, J. Exp. Med., 2000, 191(3), 561–566.
    Article CAS Google Scholar
  7. B. L. Diffey, et al., The standard erythema dose: a new photobiological concept, Photodermatol. Photoimmunol. Photomed., 1997, 13 1–2, 64–66.
    Article CAS Google Scholar
  8. G. I. Harrison, and A. R. Young, Ultraviolet radiation-induced erythema in human skin, Methods, 2002, 28(1), 14–19.
    Article CAS Google Scholar
  9. D. E. Godar, Worldwide increasing incidences of cutaneous malignant melanoma, J. Skin Cancer, 2011, 2011, 858425.
    Article Google Scholar
  10. CRUK Malignant Melanoma Trends in European Age-Standardised Incident Rates 1975–2010, http://www.cancerresearchuk.org/cancer-info/cancerstats/types/skin/incidence/uk-skin-cancer-incidence-statistics.
  11. F. R. de Gruijl, et al., Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53(1), 53–60.
    Google Scholar
  12. A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365 nm) radiation: the dose–time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18(5), 1013–1020.
    Article Google Scholar
  13. J. J. DiGiovanna, and K. H. Kraemer, Shining a light on xeroderma pigmentosum, J. Invest. Dermatol., 2012, 132 3 Pt 2, 785–796.
    Article CAS Google Scholar
  14. P. T. Bradford, et al., Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair, J. Med. Genet., 2011, 48(3), 168–176.
    Article Google Scholar
  15. N. M. Wikonkal, and D. E. Brash, Ultraviolet radiation induced signature mutations in photocarcinogenesis, J. Invest. Dermatol. Symp. Proc., 1999, 4(1), 6–10.
    Article CAS Google Scholar
  16. J. Moan, A. C. Porojnicu, and A. Dahlback, Ultraviolet radiation and malignant melanoma, Adv. Exp. Med. Biol., 2008, 624, 104–116.
    Article Google Scholar
  17. J. Moan, et al., UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden, Photochem. Photobiol. Sci., 2012, 11(1), 191–198.
    Article CAS Google Scholar
  18. F. El Ghissassi, et al., A review of human carcinogens–part D: radiation, Lancet Oncol., 2009, 10(8), 751–752.
    Article Google Scholar
  19. J. F. Dore, and M. C. Chignol, Tanning salons and skin cancer, Photochem. Photobiol. Sci., 2012, 11(1), 30–37.
    Article CAS Google Scholar
  20. International Agency for Research on Cancer Working Group on artificial ultraviolet (UV) light and skin cancer, The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review, Int. J. Cancer, 2007, 120(5), 1116–1122.
    Google Scholar
  21. M. D. Evans, M. Dizdaroglu, and M. S. Cooke, Oxidative DNA damage and disease: induction, repair and significance, Mutat. Res., 2004, 567(1), 1–61.
    Article CAS Google Scholar
  22. G. M. Halliday, et al., UV-A fingerprint mutations in human skin cancer, Photochem. Photobiol., 2005, 81(1), 3–8.
    Article CAS Google Scholar
  23. N. S. Agar, et al., The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101(14), 4954–4959.
    Article CAS Google Scholar
  24. A. Fourtanier, D. Moyal, and S. Seite, UVA filters in sun-protection products: regulatory and biological aspects, Photochem. Photobiol. Sci., 2012, 11(1), 81–89.
    Article CAS Google Scholar
  25. F. P. Gasparro, Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy, Environ. Health Perspect., 2000, 108 Suppl 1, 71–78.
    CAS Google Scholar
  26. A. R. Young, et al., A sunscreen‘s labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study, J. Invest. Dermatol., 2010, 130(10), 2457–2462.
    Article CAS Google Scholar
  27. A. C. Kerr, et al., Ultraviolet A1 phototherapy: a British photodermatology group workshop report, Clin. Exp. Dermatol., 2012, 37, 219–226.
    Article CAS Google Scholar
  28. A. R. Young, Chromophores in human skin, Phys. Med. Biol., 1997, 42(5), 789–802.
    Article CAS Google Scholar
  29. J. L. Ravanat, T. Douki, and J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol., B, 2001, 63 1–3, 88–102.
    Article CAS Google Scholar
  30. J. Cadet, et al., Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8(7), 903–911.
    Article CAS Google Scholar
  31. J. Cadet, E. Sage, and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571 1–2, 3–17.
    Article CAS Google Scholar
  32. G. P. Pfeifer, and A. Besaratinia, UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer, Photochem. Photobiol. Sci., 2012, 11(1), 90–97.
    Article CAS Google Scholar
  33. S. Mouret, et al., Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(37), 13765–13770.
    Article CAS Google Scholar
  34. A. R. Young, et al., The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema, J. Invest. Dermatol., 1998, 111(6), 982–988.
    Article CAS Google Scholar
  35. E. Sage, P. M. Girard, and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11(1), 74–80.
    Article CAS Google Scholar
  36. A. Tewari, R. P. Sarkany, and A. R. Young, UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo, J. Invest. Dermatol., 2011, 132, 394–400.
    Article Google Scholar
  37. T. M. Runger, and U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol. Photoimmunol. Photomed., 2008, 24(1), 2–10.
    Article CAS Google Scholar
  38. R. R. Anderson, and J. A. Parrish, The optics of human skin, J. Invest. Dermatol., 1981, 77(1), 13–19.
    Article CAS Google Scholar
  39. M. J. van Gemert, et al., Skin optics, IEEE Trans. Biomed. Eng., 1989, 36(12), 1146–1154.
    Article Google Scholar
  40. W. A. Bruls, et al., Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths, Photochem. Photobiol., 1984, 40(4), 485–494.
    Article CAS Google Scholar
  41. X. X. Huang, F. Bernerd, and G. M. Halliday, Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin, Am. J. Pathol., 2009, 174(4), 1534–1543.
    Article CAS Google Scholar
  42. V. Lhiaubet-Vallet, et al., Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA, J. Phys. Chem. B, 2007, 111(25), 7409–7414.
    Article CAS Google Scholar
  43. K. S. Robinson, et al., Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells, Toxicol. in Vitro, 2010, 24(4), 1126–1132.
    Article CAS Google Scholar
  44. T. Douki, et al., Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42(30), 9221–9226.
    Article CAS Google Scholar
  45. B. Epe, DNA damage spectra induced by photosensitization, Photochem. Photobiol. Sci., 2012, 11(1), 98–106.
    Article CAS Google Scholar
  46. Y. Jiang, et al., UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96(3), 1151–1158.
    Article CAS Google Scholar
  47. S. Mouret, et al., UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8(7), 1706–1711.
    Article CAS Google Scholar
  48. C. Kielbassa, L. Roza, and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18(4), 811–816.
    Article CAS Google Scholar
  49. W. Baumler, et al., UVA and endogenous photosensitizers–the detection of singlet oxygen by its luminescence, Photochem. Photobiol. Sci., 2012, 11(1), 107–117.
    Article Google Scholar
  50. J. L. Ravanat, et al., Singlet oxygen induces oxidation of cellular DNA, J. Biol. Chem., 2000, 275(51), 40601–4.
    Article CAS Google Scholar
  51. S. Basu-Modak, and R. M. Tyrrell, Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene, Cancer Res., 1993, 53(19), 4505–4510.
    CAS Google Scholar
  52. Y. Hattori, et al., 8-Hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure, J. Invest. Dermatol., 1996, 107(5), 733–737.
    Article CAS Google Scholar
  53. S. Liardet, et al., Protection against pyrimidine dimers, p53, and 8-hydroxy-2′-deoxyguanosine expression in ultraviolet-irradiated human skin by sunscreens: difference between UVB + UVA and UVB alone sunscreens, J. Invest. Dermatol., 2001, 117(6), 1437–1441.
    Article CAS Google Scholar
  54. M. S. Cooke, et al., Induction and excretion of ultraviolet-induced 8-oxo-2′-deoxyguanosine and thymine dimers in vivo: implications for PUVA, J. Invest. Dermatol., 2001, 116(2), 281–285.
    Article CAS Google Scholar
  55. M. Auletta, et al., Effect of cutaneous hypoxia upon erythema and pigment responses to UVA, UVB, and PUVA (8-MOP + UVA) in human skin, J. Invest. Dermatol., 1986, 86(6), 649–652.
    Article CAS Google Scholar
  56. A. Anders, et al., Action spectrum for erythema in humans investigated with dye lasers, Photochem. Photobiol., 1995, 61(2), 200–205.
    Article CAS Google Scholar
  57. R. D. Ley, Photoreactivation of UV-induced pyrimidine dimers and erythema in the marsupial Monodelphis domestica, Proc. Natl. Acad. Sci. U. S. A., 1985, 82(8), 2409–2411.
    Article CAS Google Scholar
  58. L. M. Coussens, and Z. Werb, Inflammation and cancer, Nature, 2002, 420(6917), 860–867.
    Article CAS Google Scholar
  59. A. Mantovani, et al., Cancer-related inflammation, Nature, 2008, 454(7203), 436–444.
    Article CAS Google Scholar
  60. R. P. Gallagher, et al., Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer, I. Basal cell carcinoma, Arch. Dermatol., 1995, 131(2), 157–163.
    Article CAS Google Scholar
  61. H. Fassihi, Spotlight on ‘xeroderma pigmentosum’, Photochem. Photobiol. Sci., 2013 10.1039/C2PP25267H.
    Google Scholar
  62. D. B. Yarosh, DNA repair, immunosuppression, and skin cancer, Cutis, 2004, 74 5 Suppl, 10–13.
    Google Scholar
  63. J. Kibitel, et al., UV-DNA damage in mouse and human cells induces the expression of tumor necrosis factor alpha, Photochem. Photobiol., 1998, 67(5), 541–546.
    Article CAS Google Scholar
  64. A. Tewari, et al., Human erythema and matrix metalloproteinase-1 mRNA induction, in vivo, share an action spectrum which suggests common chromophores, Photochem. Photobiol. Sci., 2012, 11(1), 216–223.
    Article CAS Google Scholar
  65. A. A. Vink, D. B. Yarosh, and M. L. Kripke, Chromophore for UV-induced immunosuppression: DNA, Photochem. Photobiol., 1996, 63(4), 383–386.
    Article CAS Google Scholar
  66. M. Norval, Chromophore for UV-induced immunosuppression: urocanic acid, Photochem. Photobiol., 1996, 63(4), 386–390.
    Article CAS Google Scholar
  67. D. P. Steenvoorden, G. Beijersbergen van Henegouwen, Protection against UV-induced systemic immunosuppression in mice by a single topical application of the antioxidant vitamins C and E, Int. J. Radiat. Biol., 1999, 75(6), 747–755.
    Article CAS Google Scholar
  68. S. Widyarini, et al., Photoimmune protective effect of the phytoestrogenic isoflavonoid equol is partially due to its antioxidant activities, Photochem. Photobiol. Sci., 2012, 11(7), 1186–1192.
    Article CAS Google Scholar
  69. R. D. Ley, and V. E. Reeve, Chemoprevention of ultraviolet radiation-induced skin cancer, Environ. Health Perspect., 1997, 105 Suppl 4, 981–984.
    CAS Google Scholar
  70. J. F. Zhao, et al., Green tea protects against psoralen plus ultraviolet A-induced photochemical damage to skin, J. Invest. Dermatol., 1999, 113(6), 1070–1075.
    Article CAS Google Scholar
  71. E. D. Pleasance, et al., A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2010, 463(7278), 191–196.
    Article CAS Google Scholar
  72. D. L. Mitchell, and R. S. Nairn, The biology of the (6–4) photoproduct, Photochem. Photobiol., 1989, 49(6), 805–819.
    Article CAS Google Scholar
  73. V. J. Bykov, et al., In situ repair of cyclobutane pyrimidine dimers and 6–4 photoproducts in human skin exposed to solar simulating radiation, J. Invest. Dermatol., 1999, 112(3), 326–331.
    Article CAS Google Scholar
  74. H. Ikehata, and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52(2), 115–125.
    Article CAS Google Scholar
  75. J. Jans, et al., Powerful skin cancer protection by a CPD-photolyase transgene, Curr. Biol., 2005, 15(2), 105–115.
    Article CAS Google Scholar
  76. C. I. Kowalczuk, et al., Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation, Int. J. Radiat. Biol., 2006, 82(11), 781–792.
    Article CAS Google Scholar
  77. D. Mitchell, and A. Fernandez, The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma, Photochem. Photobiol. Sci., 2012, 11(1), 69–73.
    Article CAS Google Scholar
  78. D. E. Godar, R. J. Landry, and A. D. Lucas, Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma, Med. Hypotheses, 2009, 72(4), 434–443.
    Article CAS Google Scholar
  79. A. Besaratinia, et al., DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(29), 10058–10063.
    Article CAS Google Scholar
  80. A. Besaratinia, et al., G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet a radiation in mammalian cells, Biochemistry, 2004, 43(25), 8169–8177.
    Article CAS Google Scholar
  81. A. Besaratinia, S. I. Kim, and G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22(7), 2379–2392.
    Article CAS Google Scholar
  82. P. J. Rochette, et al., UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine–thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31(11), 2786–2794.
    Article CAS Google Scholar
  83. E. A. Drobetsky, J. Turcotte, and A. Chateauneuf, A role for ultraviolet A in solar mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 1995, 92(6), 2350–2354.
    Article CAS Google Scholar
  84. U. P. Kappes, et al., Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126(3), 667–675.
    Article CAS Google Scholar
  85. U. P. Kappes, and T. M. Runger, No major role for 7,8-dihydro-8-oxoguanine in ultraviolet light-induced mutagenesis, Radiat. Res., 2005, 164 4 Pt 1, 440–445.
    Article CAS Google Scholar
  86. F. P. Noonan, et al., Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment, Nat. Commun., 2012, 3, 884.
    Article Google Scholar
  87. S. Mouret, A. Forestier, and T. Douki, The specificity of UVA-induced DNA damage in human melanocytes, Photochem. Photobiol. Sci., 2012, 11(1), 155–162.
    Article CAS Google Scholar
  88. O. Su, et al., Effectiveness of medium-dose ultraviolet A1 phototherapy in localized scleroderma, Int. J. Dermatol., 2011, 50(8), 1006–1013.
    Article Google Scholar
  89. C. Andres, et al., Successful ultraviolet A1 phototherapy in the treatment of localized scleroderma: a retrospective and prospective study, Br. J. Dermatol., 2010, 162(2), 445–447.
    Article CAS Google Scholar
  90. T. Gambichler, et al., Medium-dose ultraviolet (UV) A1 vs. narrowband UVB phototherapy in atopic eczema: a randomized crossover study, Br. J. Dermatol., 2009, 160(3), 652–658.
    Article CAS Google Scholar
  91. A. C. Kerr, et al., Ultraviolet A1 phototherapy: a British Photodermatology Group workshop report, Clin. Exp. Dermatol., 2012, 37(3), 219–226.
    Article CAS Google Scholar
  92. M. Grachtchouk, et al., Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations, J. Clin. Invest., 2011, 121(5), 1768–1781.
    Article CAS Google Scholar

Download references