UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer (original) (raw)
References
D. L. Miller, M. A. Weinstock, Nonmelanoma skin cancer in the United States: incidence, J. Am. Acad. Dermatol., 1994, 30, 774–778. CASPubMed Google Scholar
A. N. Houghton, D. Polsky, Focus on melanoma, Cancer Cell, 2002, 2, 275–278. CASPubMed Google Scholar
M. R. Donaldson, B. M. Coldiron, No end in sight: the skin cancer epidemic continues, Semin. Cutaneous Med. Surg., 2011, 30, 3–5. CAS Google Scholar
M. A. Tucker, Is sunlight important to melanoma causation?, Cancer Epidemiol., Biomarkers Prev., 2008, 17, 467–468. PubMed Google Scholar
R. Greinert, Skin cancer: new markers for better prevention, Pathobiology, 2009, 76, 64–81. PubMed Google Scholar
G. P. Pfeifer, Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment, Photochem. Photobiol., 1997, 65, 270–283. CASPubMed Google Scholar
D. L. Mitchell, R. S. Nairn, The biology of the (6–4) photoproduct, Photochem. Photobiol., 1989, 49, 805–819. CASPubMed Google Scholar
J.-H. Yoon, C.-S. Lee, T. O’Connor, A. Yasui, G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299, 681–693. CASPubMed Google Scholar
T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226. CASPubMed Google Scholar
P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794. CASPubMedPubMed Central Google Scholar
A. Besaratinia, T. W. Synold, H. H. Chen, C. Chang, B. Xi, A. D. Riggs, G. P. Pfeifer, DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063. CASPubMedPubMed Central Google Scholar
J. Cadet, M. Berger, T. Douki, B. Morin, S. Raoul, J. L. Ravanat, S. Spinelli, Effects of UV and visible radiation on DNA-final base damage, Biol. Chem., 1997, 378, 1275–1286. CASPubMed Google Scholar
C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816. CASPubMed Google Scholar
Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80. CASPubMed Google Scholar
E. Kvam, R. M. Tyrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384. CASPubMed Google Scholar
X. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, D. M. Mitchell, H. Wei, Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells, Photochem. Photobiol., 1997, 65, 119–124. CASPubMed Google Scholar
S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2004, 556, 135–142. CAS Google Scholar
S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770. CASPubMedPubMed Central Google Scholar
A. Besaratinia, T. W. Synold, B. Xi, G. P. Pfeifer, G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet a radiation in mammalian cells, Biochemistry, 2004, 43, 8169–8177. CASPubMed Google Scholar
J. Cadet, T. Douki, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 2011, 131, 1005–1007. CASPubMed Google Scholar
J. P. Pouget, T. Douki, M. J. Richard, J. Cadet, DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay, Chem. Res. Toxicol., 2000, 13, 541–549. CASPubMed Google Scholar
H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai, T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296. CASPubMed Google Scholar
U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, T. M. Runger, Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675. CASPubMed Google Scholar
A. Besaratinia, S. I. Kim, S. E. Bates, G. P. Pfeifer, Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5953–5958. CASPubMedPubMed Central Google Scholar
N. S. Agar, G. M. Halliday, R. S. Barnetson, H. N. Ananthaswamy, M. Wheeler, A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4954–4959. CASPubMedPubMed Central Google Scholar
P. C. Hanawalt, A. Sarasin, Cancer-prone hereditary diseases with DNA processing abnormalities, Trends Genet., 1986, 2, 124–129. CAS Google Scholar
H. N. Ananthaswamy, W. E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis, Photochem. Photobiol., 1990, 52, 1119–1136. CASPubMed Google Scholar
G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6–4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 1374–1378. CASPubMedPubMed Central Google Scholar
G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, Binding of transcription factors creates hot spots for UV photoproducts in vivo, Mol. Cell. Biol., 1992, 12, 1798–1804. CASPubMedPubMed Central Google Scholar
S. Tommasi, A. B. Oxyzoglou, G. P. Pfeifer, Cell cycle-independent removal of UV-induced pyrimidine dimers from the promoter and the transcription initiation domain of the human CDC2 gene, Nucleic Acids Res., 2000, 28, 3991–3998. CASPubMedPubMed Central Google Scholar
S. Tornaletti, G. P. Pfeifer, Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer, Science, 1994, 263, 1436–1438. CASPubMed Google Scholar
Y. Tu, S. Tornaletti, G. P. Pfeifer, DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site, EMBO J., 1996, 15, 675–683. CASPubMedPubMed Central Google Scholar
R. Dammann, G. P. Pfeifer, Lack of gene- and strand-specific DNA repair in RNA polymerase III transcribed human tRNA genes, Mol. Cell. Biol., 1997, 17, 219–229. CASPubMedPubMed Central Google Scholar
D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Pontén, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128. CASPubMedPubMed Central Google Scholar
N. Dumaz, C. Drougard, A. Sarasin, L. Daya-Grosjean, Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 10529–10533. CASPubMedPubMed Central Google Scholar
A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro, A. E. Bale, D. E. Brash, Mutation hot spots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220. CASPubMedPubMed Central Google Scholar
G. Giglia-Mari, A. Sarasin, TP53 mutations in human skin cancers, Hum. Mutat., 2003, 21, 217–228. CASPubMed Google Scholar
S. Tommasi, M. F. Denissenko, G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730. CASPubMed Google Scholar
S. Tornaletti, G. P. Pfeifer, Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers, Oncogene, 1995, 10, 1493–1499. CASPubMed Google Scholar
G. P. Pfeifer, Mutagenesis at methylated CpG sequences, Curr. Top. Microbiol. Immunol., 2006, 301, 259–281. CASPubMed Google Scholar
A. Sharonov, T. Gustavsson, S. Marguet, D. Markovitsi, Photophysical properties of 5-methylcytidine, Photochem. Photobiol. Sci., 2003, 2, 362–364. CASPubMed Google Scholar
Y.-H. You, C. Li, G. P. Pfeifer, Involvement of 5-methylcytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503. CASPubMed Google Scholar
Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694. CASPubMed Google Scholar
H. Ikehata, T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125. CASPubMed Google Scholar
D. H. Lee, G. P. Pfeifer, Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis, J. Biol. Chem., 2003, 278, 10314–10321. CASPubMed Google Scholar
R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366. CASPubMedPubMed Central Google Scholar
G. Kelfkens, F. R. de Gruijl, J. C. van der Leun, Ozone depletion and increase in annual carcinogenic ultraviolet dose, Photochem. Photobiol., 1990, 52, 819–823. CASPubMed Google Scholar
F. R. de Gruijl, Photocarcinogenesis: UVA vs. UVB radiation, Skin Pharmacol. Physiol., 2002, 15, 316–320. Google Scholar
F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60. PubMed Google Scholar
A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, G. P. Pfeifer, Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight, FASEB J., 2011 10.1096/fj.11-187336. Google Scholar
J. Cadet, T. Douki, J. L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8, 903–911. CASPubMed Google Scholar
J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17. CASPubMed Google Scholar
G. P. Pfeifer, Y. H. You, A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31. CASPubMed Google Scholar
R. M. Tyrrell, Role for singlet oxygen in biological effects of ultraviolet A radiation, Methods Enzymol., 2000, 319, 290–296. CASPubMed Google Scholar
E. Sage, Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context, Photochem. Photobiol., 1993, 57, 163–174. CASPubMed Google Scholar
J. H. Yoon, C. S. Lee, T. R. O’Connor, A. Yasui, G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299, 681–693. CASPubMed Google Scholar
Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694. CASPubMed Google Scholar
C. P. Jacovides, G. P. Gianourakos, D. N. Asimakopoulos, M. D. Steven, Measured Spectra of Solar Ultraviolet Irradiances at Athens Basin, Greece, Theor. Appl. Climatol., 1998, 59, 107–119. Google Scholar
S. K. Banerjee, R. B. Christensen, C. W. Lawrence, J. E. LeClerc, Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 8141–8145. CASPubMedPubMed Central Google Scholar
A. Gentil, F. Le Page, A. Margot, C. W. Lawrence, A. Borden, A. Sarasin, Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6–4) photoproduct in mammalian cells, Nucleic Acids Res., 1996, 24, 1837–1840. CASPubMedPubMed Central Google Scholar
P. E. M. Gibbs, C. W. Lawrence, U-U and T-T cyclobutane dimers have different mutational properties, Nucleic Acids Res., 1993, 21, 4059–4065. CASPubMedPubMed Central Google Scholar
J.-S. Taylor, C. L. O’Day, Cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro, Biochemistry, 1990, 29, 1624–1632. CASPubMed Google Scholar
M. J. Horsfall, A. Borden, C. W. Lawrence, Mutagenic properties of the T-C cyclobutane dimer, J. Bacteriol., 1997, 179, 2835–2839. CASPubMedPubMed Central Google Scholar
B. Vu, V. J. Cannistraro, L. Sun, J. S. Taylor, DNA synthesis past a 5-methylC-containing cis-syn-cyclobutane pyrimidine dimer by yeast pol eta is highly nonmutagenic, Biochemistry, 2006, 45, 9327–9335. CASPubMed Google Scholar
D. L. Mitchell, A. A. Fernandez, Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma, Pigm. Cell Melanoma Res., 2011, 24, 119–124. CAS Google Scholar
A. Besaratinia, S. I. Kim, G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22, 2379–2392. CASPubMed Google Scholar
L. F. Batista, B. Kaina, R. Meneghini, C. F. Menck, How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis, Mutat. Res., Rev. Mutat. Res., 2009, 681, 197–208. CAS Google Scholar
R. E. Johnson, C. M. Kondratick, S. Prakash, L. Prakash, hRAD30 mutations in the variant form of xeroderma pigmentosum, Science, 1999, 285, 263–265. CASPubMed Google Scholar
R. E. Johnson, S. Prakash, L. Prakash, Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta, Science, 1999, 283, 1001–1004. CASPubMed Google Scholar
C. Masutani, R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio, F. Hanaoka, The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta, Nature, 1999, 399, 700–704. CASPubMed Google Scholar
J. H. Choi, G. P. Pfeifer, The role of DNA polymerase eta in UV mutational spectra, DNA Repair, 2005, 4, 211–220. CASPubMed Google Scholar
S. G. Kozmin, Y. I. Pavlov, T. A. Kunkel, E. Sage, Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight, Nucleic Acids Res., 2003, 31, 4541–4552. CASPubMedPubMed Central Google Scholar
J. H. Yoon, L. Prakash, S. Prakash, Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 18219–18224. CASPubMedPubMed Central Google Scholar
Y. Tu, R. Dammann, G. P. Pfeifer, Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo, J. Mol. Biol., 1998, 284, 297–311. CASPubMed Google Scholar
N. Jiang, J.-S. Taylor, In vivo evidence that UV-induced C-T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products, Biochemistry, 1993, 32, 472–481. CASPubMed Google Scholar
Q. Song, V. J. Cannistraro, J. S. Taylor, Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate, J. Biol. Chem., 2010, 286, 6329–6335. PubMedPubMed Central Google Scholar
F. R. de Gruijl, Skin cancer and solar UV radiation, Eur. J. Cancer, 1999, 35, 2003–2009. PubMed Google Scholar
C. Jhappan, F. P. Noonan, G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma, Oncogene, 2003, 22, 3099–3112. CASPubMed Google Scholar
B. A. Gilchrest, M. S. Eller, A. C. Geller, M. Yaar, The pathogenesis of melanoma induced by ultraviolet radiation, N. Engl. J. Med., 1999, 340, 1341–1348. CASPubMed Google Scholar
M. G. Cockburn, J. Zadnick, D. Deapen, Developing epidemic of melanoma in the Hispanic population of California, Cancer, 2006, 106, 1162–1168. PubMed Google Scholar
U. Leiter, C. Garbe, Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight, Adv. Exp. Med. Biol., 2008, 624, 89–103. PubMed Google Scholar
L. Pho, D. Grossman, S. A. Leachman, Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma, Curr. Opin. Oncol., 2006, 18, 173–179. CASPubMed Google Scholar
Z. Tatalovich, J. P. Wilson, T. Mack, Y. Yan, M. Cockburn, The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk, J. Photochem. Photobiol., B, 2006, 85, 198–204. CASPubMed Google Scholar
I. H. Langford, G. Bentham, A. L. McDonald, Multi-level modelling of geographically aggregated health data: a case study on malignant melanoma mortality and UV exposure in the European Community, Stat. Med., 1998, 17, 41–57. CASPubMed Google Scholar
J. Moan, A. Dahlback, R. B. Setlow, Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation, Photochem. Photobiol., 1999, 70, 243–247. CASPubMed Google Scholar
S. Q. Wang, R. Setlow, M. Berwick, D. Polsky, A. A. Marghoob, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: a review, J. Am. Acad. Dermatol., 2001, 44, 837–846. CASPubMed Google Scholar
A. D. Woodhead, R. B. Setlow, M. Tanaka, Environmental factors in nonmelanoma and melanoma skin cancer, J. Epidemiol., 1999, 9, S102–S114. CASPubMed Google Scholar
F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60. PubMed Google Scholar
F. R. de Gruijl, Photocarcinogenesis: UVA vs. UVB radiation, Skin Pharmacol. Physiol., 2002, 15, 316–320. Google Scholar
A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18, 1013–1020. PubMed Google Scholar
P. Autier, J. F. Dore, F. Lejeune, K. F. Koelmel, O. Geffeler, P. Hille, J. P. Cesarini, D. Lienard, A. Liabeuf, M. Joarlette, et al., Cutaneous malignant melanoma and exposure to sunlamps or sunbeds: an EORTC multicenter case-control study in Belgium, France and Germany. EORTC Melanoma Cooperative Group, Int. J. Cancer, 1994, 58, 809–813. CASPubMed Google Scholar
IARC Working Group, The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: A systematic review, Int. J. Cancer, 2007, 120, 1116–1122. Google Scholar
Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158. CASPubMedPubMed Central Google Scholar
S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711. CASPubMed Google Scholar
R. D. Ley, Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica, Cancer Res., 1997, 57, 3682–3684. CASPubMed Google Scholar
R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670. CASPubMedPubMed Central Google Scholar
D. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames, I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9329–9334. CASPubMedPubMed Central Google Scholar
E. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet B but not ultraviolet A radiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376. PubMed Google Scholar
A. Kamb, D. Shattuck-Eidens, R. Eeles, Q. Liu, N. A. Gruis, W. Ding, C. Hussey, T. Tran, Y. Miki, J. Weaver-Feldhaus, et al., Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus, Nat. Genet., 1994, 8, 22–26. CAS Google Scholar
T. Hocker, H. Tsao, Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants, Hum. Mutat., 2007, 28, 578–588. CASPubMed Google Scholar
P. M. Pollock, F. Yu, L. Qiu, P. G. Parsons, N. K. Hayward, Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines, Oncogene, 1995, 11, 663–668. CASPubMed Google Scholar
A. Besaratinia, G. P. Pfeifer, Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma, Hum. Mutat., 2008, 29, 983–991. CASPubMed Google Scholar
N. E. Thomas, M. Berwick, M. Cordeiro-Stone, Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation?, J. Invest. Dermatol., 2006, 126, 1693–1696. CASPubMed Google Scholar
C. D. Van Raamsdonk, K. G. Griewank, M. B. Crosby, M. C. Garrido, S. Vemula, T. Wiesner, A. C. Obenauf, W. Wackernagel, G. Green, N. Bouvier, M. M. Sozen, G. Baimukanova, R. Roy, A. Heguy, I. Dolgalev, R. Khanin, K. Busam, M. R. Speicher, J. O’Brien, B. C. Bastian, Mutations in GNA11 in uveal melanoma, N. Engl. J. Med., 2010, 363, 2191–2199. PubMedPubMed Central Google Scholar
A. Besaratinia, G. P. Pfeifer, Uveal melanoma and GNA11 mutations: a new piece added to the puzzle, Pigm. Cell Melanoma Res., 2011, 24, 18–20. CAS Google Scholar
Z. A. Abdel-Malek, A. L. Kadekaro, V. B. Swope, Stepping up melanocytes to the challenge of UV exposure, Pigm. Cell Melanoma Res., 2010, 23, 171–186. CAS Google Scholar
G. G. McGill, M. Horstmann, H. R. Widlund, J. Du, G. Motyckova, E. K. Nishimura, Y. L. Lin, S. Ramaswamy, W. Avery, H. F. Ding, S. A. Jordan, I. J. Jackson, S. J. Korsmeyer, T. R. Golub, D. E. Fisher, Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability, Cell, 2002, 109, 707–718. CASPubMed Google Scholar
E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, M. R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2009, 463, 191–196. PubMedPubMed Central Google Scholar
G. P. Pfeifer, Environmental exposures and mutational patterns of cancer genomes, Genome Med., 2010, 2, 54. PubMedPubMed Central Google Scholar
I. Mellon, G. Spivak, P. C. Hanawalt, Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene, Cell, 1987, 51, 241–249. CASPubMed Google Scholar
C. Greenman, P. Stephens, R. Smith, G. L. Dalgliesh, C. Hunter, G. Bignell, H. Davies, J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E. E. Schmidt, T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, A. Jenkinson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D. P. Cahill, D. N. Louis, P. Goldstraw, A. G. Nicholson, F. Brasseur, L. Looijenga, B. L. Weber, Y. E. Chiew, A. DeFazio, M. F. Greaves, A. R. Green, P. Campbell, E. Birney, D. F. Easton, G. Chenevix-Trench, M. H. Tan, S. K. Khoo, B. T. Teh, S. T. Yuen, S. Y. Leung, R. Wooster, P. A. Futreal, M. R. Stratton, Patterns of somatic mutation in human cancer genomes, Nature, 2007, 446, 153–158. CASPubMedPubMed Central Google Scholar
X. Wei, V. Walia, J. C. Lin, J. K. Teer, T. D. Prickett, J. Gartner, S. Davis, K. Stemke-Hale, M. A. Davies, J. E. Gershenwald, W. Robinson, S. Robinson, S. A. Rosenberg, Y. Samuels, Exome sequencing identifies GRIN2A as frequently mutated in melanoma, Nat. Genet., 2011, 43, 442–446. CASPubMedPubMed Central Google Scholar