UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer (original) (raw)

References

  1. D. L. Miller, M. A. Weinstock, Nonmelanoma skin cancer in the United States: incidence, J. Am. Acad. Dermatol., 1994, 30, 774–778.
    CAS PubMed Google Scholar
  2. A. N. Houghton, D. Polsky, Focus on melanoma, Cancer Cell, 2002, 2, 275–278.
    CAS PubMed Google Scholar
  3. M. R. Donaldson, B. M. Coldiron, No end in sight: the skin cancer epidemic continues, Semin. Cutaneous Med. Surg., 2011, 30, 3–5.
    CAS Google Scholar
  4. M. A. Tucker, Is sunlight important to melanoma causation?, Cancer Epidemiol., Biomarkers Prev., 2008, 17, 467–468.
    PubMed Google Scholar
  5. R. Greinert, Skin cancer: new markers for better prevention, Pathobiology, 2009, 76, 64–81.
    PubMed Google Scholar
  6. G. P. Pfeifer, Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment, Photochem. Photobiol., 1997, 65, 270–283.
    CAS PubMed Google Scholar
  7. D. L. Mitchell, R. S. Nairn, The biology of the (6–4) photoproduct, Photochem. Photobiol., 1989, 49, 805–819.
    CAS PubMed Google Scholar
  8. J.-H. Yoon, C.-S. Lee, T. O’Connor, A. Yasui, G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299, 681–693.
    CAS PubMed Google Scholar
  9. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.
    CAS PubMed Google Scholar
  10. P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.
    CAS PubMed PubMed Central Google Scholar
  11. A. Besaratinia, T. W. Synold, H. H. Chen, C. Chang, B. Xi, A. D. Riggs, G. P. Pfeifer, DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.
    CAS PubMed PubMed Central Google Scholar
  12. J. Cadet, M. Berger, T. Douki, B. Morin, S. Raoul, J. L. Ravanat, S. Spinelli, Effects of UV and visible radiation on DNA-final base damage, Biol. Chem., 1997, 378, 1275–1286.
    CAS PubMed Google Scholar
  13. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.
    CAS PubMed Google Scholar
  14. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.
    CAS PubMed Google Scholar
  15. E. Kvam, R. M. Tyrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.
    CAS PubMed Google Scholar
  16. X. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, D. M. Mitchell, H. Wei, Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells, Photochem. Photobiol., 1997, 65, 119–124.
    CAS PubMed Google Scholar
  17. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2004, 556, 135–142.
    CAS Google Scholar
  18. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.
    CAS PubMed PubMed Central Google Scholar
  19. A. Besaratinia, T. W. Synold, B. Xi, G. P. Pfeifer, G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet a radiation in mammalian cells, Biochemistry, 2004, 43, 8169–8177.
    CAS PubMed Google Scholar
  20. J. Cadet, T. Douki, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 2011, 131, 1005–1007.
    CAS PubMed Google Scholar
  21. J. P. Pouget, T. Douki, M. J. Richard, J. Cadet, DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay, Chem. Res. Toxicol., 2000, 13, 541–549.
    CAS PubMed Google Scholar
  22. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai, T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.
    CAS PubMed Google Scholar
  23. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, T. M. Runger, Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.
    CAS PubMed Google Scholar
  24. A. Besaratinia, S. I. Kim, S. E. Bates, G. P. Pfeifer, Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5953–5958.
    CAS PubMed PubMed Central Google Scholar
  25. N. S. Agar, G. M. Halliday, R. S. Barnetson, H. N. Ananthaswamy, M. Wheeler, A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4954–4959.
    CAS PubMed PubMed Central Google Scholar
  26. P. C. Hanawalt, A. Sarasin, Cancer-prone hereditary diseases with DNA processing abnormalities, Trends Genet., 1986, 2, 124–129.
    CAS Google Scholar
  27. H. N. Ananthaswamy, W. E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis, Photochem. Photobiol., 1990, 52, 1119–1136.
    CAS PubMed Google Scholar
  28. G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6–4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 1374–1378.
    CAS PubMed PubMed Central Google Scholar
  29. G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, Binding of transcription factors creates hot spots for UV photoproducts in vivo, Mol. Cell. Biol., 1992, 12, 1798–1804.
    CAS PubMed PubMed Central Google Scholar
  30. S. Tommasi, A. B. Oxyzoglou, G. P. Pfeifer, Cell cycle-independent removal of UV-induced pyrimidine dimers from the promoter and the transcription initiation domain of the human CDC2 gene, Nucleic Acids Res., 2000, 28, 3991–3998.
    CAS PubMed PubMed Central Google Scholar
  31. S. Tornaletti, G. P. Pfeifer, Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer, Science, 1994, 263, 1436–1438.
    CAS PubMed Google Scholar
  32. Y. Tu, S. Tornaletti, G. P. Pfeifer, DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site, EMBO J., 1996, 15, 675–683.
    CAS PubMed PubMed Central Google Scholar
  33. R. Dammann, G. P. Pfeifer, Lack of gene- and strand-specific DNA repair in RNA polymerase III transcribed human tRNA genes, Mol. Cell. Biol., 1997, 17, 219–229.
    CAS PubMed PubMed Central Google Scholar
  34. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Pontén, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.
    CAS PubMed PubMed Central Google Scholar
  35. N. Dumaz, C. Drougard, A. Sarasin, L. Daya-Grosjean, Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 10529–10533.
    CAS PubMed PubMed Central Google Scholar
  36. A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro, A. E. Bale, D. E. Brash, Mutation hot spots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.
    CAS PubMed PubMed Central Google Scholar
  37. G. Giglia-Mari, A. Sarasin, TP53 mutations in human skin cancers, Hum. Mutat., 2003, 21, 217–228.
    CAS PubMed Google Scholar
  38. S. Tommasi, M. F. Denissenko, G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730.
    CAS PubMed Google Scholar
  39. S. Tornaletti, G. P. Pfeifer, Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers, Oncogene, 1995, 10, 1493–1499.
    CAS PubMed Google Scholar
  40. G. P. Pfeifer, Mutagenesis at methylated CpG sequences, Curr. Top. Microbiol. Immunol., 2006, 301, 259–281.
    CAS PubMed Google Scholar
  41. A. Sharonov, T. Gustavsson, S. Marguet, D. Markovitsi, Photophysical properties of 5-methylcytidine, Photochem. Photobiol. Sci., 2003, 2, 362–364.
    CAS PubMed Google Scholar
  42. Y.-H. You, C. Li, G. P. Pfeifer, Involvement of 5-methylcytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.
    CAS PubMed Google Scholar
  43. Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.
    CAS PubMed Google Scholar
  44. H. Ikehata, T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.
    CAS PubMed Google Scholar
  45. D. H. Lee, G. P. Pfeifer, Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis, J. Biol. Chem., 2003, 278, 10314–10321.
    CAS PubMed Google Scholar
  46. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366.
    CAS PubMed PubMed Central Google Scholar
  47. G. Kelfkens, F. R. de Gruijl, J. C. van der Leun, Ozone depletion and increase in annual carcinogenic ultraviolet dose, Photochem. Photobiol., 1990, 52, 819–823.
    CAS PubMed Google Scholar
  48. F. R. de Gruijl, Photocarcinogenesis: UVA vs. UVB radiation, Skin Pharmacol. Physiol., 2002, 15, 316–320.
    Google Scholar
  49. F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60.
    PubMed Google Scholar
  50. A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, G. P. Pfeifer, Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight, FASEB J., 2011 10.1096/fj.11-187336.
    Google Scholar
  51. J. Cadet, T. Douki, J. L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8, 903–911.
    CAS PubMed Google Scholar
  52. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17.
    CAS PubMed Google Scholar
  53. G. P. Pfeifer, Y. H. You, A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31.
    CAS PubMed Google Scholar
  54. R. M. Tyrrell, Role for singlet oxygen in biological effects of ultraviolet A radiation, Methods Enzymol., 2000, 319, 290–296.
    CAS PubMed Google Scholar
  55. E. Sage, Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context, Photochem. Photobiol., 1993, 57, 163–174.
    CAS PubMed Google Scholar
  56. J. H. Yoon, C. S. Lee, T. R. O’Connor, A. Yasui, G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299, 681–693.
    CAS PubMed Google Scholar
  57. Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.
    CAS PubMed Google Scholar
  58. C. P. Jacovides, G. P. Gianourakos, D. N. Asimakopoulos, M. D. Steven, Measured Spectra of Solar Ultraviolet Irradiances at Athens Basin, Greece, Theor. Appl. Climatol., 1998, 59, 107–119.
    Google Scholar
  59. S. K. Banerjee, R. B. Christensen, C. W. Lawrence, J. E. LeClerc, Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 8141–8145.
    CAS PubMed PubMed Central Google Scholar
  60. A. Gentil, F. Le Page, A. Margot, C. W. Lawrence, A. Borden, A. Sarasin, Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6–4) photoproduct in mammalian cells, Nucleic Acids Res., 1996, 24, 1837–1840.
    CAS PubMed PubMed Central Google Scholar
  61. P. E. M. Gibbs, C. W. Lawrence, U-U and T-T cyclobutane dimers have different mutational properties, Nucleic Acids Res., 1993, 21, 4059–4065.
    CAS PubMed PubMed Central Google Scholar
  62. J.-S. Taylor, C. L. O’Day, Cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro, Biochemistry, 1990, 29, 1624–1632.
    CAS PubMed Google Scholar
  63. M. J. Horsfall, A. Borden, C. W. Lawrence, Mutagenic properties of the T-C cyclobutane dimer, J. Bacteriol., 1997, 179, 2835–2839.
    CAS PubMed PubMed Central Google Scholar
  64. B. Vu, V. J. Cannistraro, L. Sun, J. S. Taylor, DNA synthesis past a 5-methylC-containing cis-syn-cyclobutane pyrimidine dimer by yeast pol eta is highly nonmutagenic, Biochemistry, 2006, 45, 9327–9335.
    CAS PubMed Google Scholar
  65. D. L. Mitchell, A. A. Fernandez, Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma, Pigm. Cell Melanoma Res., 2011, 24, 119–124.
    CAS Google Scholar
  66. A. Besaratinia, S. I. Kim, G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22, 2379–2392.
    CAS PubMed Google Scholar
  67. L. F. Batista, B. Kaina, R. Meneghini, C. F. Menck, How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis, Mutat. Res., Rev. Mutat. Res., 2009, 681, 197–208.
    CAS Google Scholar
  68. R. E. Johnson, C. M. Kondratick, S. Prakash, L. Prakash, hRAD30 mutations in the variant form of xeroderma pigmentosum, Science, 1999, 285, 263–265.
    CAS PubMed Google Scholar
  69. R. E. Johnson, S. Prakash, L. Prakash, Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta, Science, 1999, 283, 1001–1004.
    CAS PubMed Google Scholar
  70. C. Masutani, R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio, F. Hanaoka, The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta, Nature, 1999, 399, 700–704.
    CAS PubMed Google Scholar
  71. J. H. Choi, G. P. Pfeifer, The role of DNA polymerase eta in UV mutational spectra, DNA Repair, 2005, 4, 211–220.
    CAS PubMed Google Scholar
  72. S. G. Kozmin, Y. I. Pavlov, T. A. Kunkel, E. Sage, Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight, Nucleic Acids Res., 2003, 31, 4541–4552.
    CAS PubMed PubMed Central Google Scholar
  73. J. H. Yoon, L. Prakash, S. Prakash, Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 18219–18224.
    CAS PubMed PubMed Central Google Scholar
  74. Y. Tu, R. Dammann, G. P. Pfeifer, Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo, J. Mol. Biol., 1998, 284, 297–311.
    CAS PubMed Google Scholar
  75. N. Jiang, J.-S. Taylor, In vivo evidence that UV-induced C-T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products, Biochemistry, 1993, 32, 472–481.
    CAS PubMed Google Scholar
  76. Q. Song, V. J. Cannistraro, J. S. Taylor, Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate, J. Biol. Chem., 2010, 286, 6329–6335.
    PubMed PubMed Central Google Scholar
  77. F. R. de Gruijl, Skin cancer and solar UV radiation, Eur. J. Cancer, 1999, 35, 2003–2009.
    PubMed Google Scholar
  78. C. Jhappan, F. P. Noonan, G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma, Oncogene, 2003, 22, 3099–3112.
    CAS PubMed Google Scholar
  79. B. A. Gilchrest, M. S. Eller, A. C. Geller, M. Yaar, The pathogenesis of melanoma induced by ultraviolet radiation, N. Engl. J. Med., 1999, 340, 1341–1348.
    CAS PubMed Google Scholar
  80. M. G. Cockburn, J. Zadnick, D. Deapen, Developing epidemic of melanoma in the Hispanic population of California, Cancer, 2006, 106, 1162–1168.
    PubMed Google Scholar
  81. U. Leiter, C. Garbe, Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight, Adv. Exp. Med. Biol., 2008, 624, 89–103.
    PubMed Google Scholar
  82. L. Pho, D. Grossman, S. A. Leachman, Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma, Curr. Opin. Oncol., 2006, 18, 173–179.
    CAS PubMed Google Scholar
  83. Z. Tatalovich, J. P. Wilson, T. Mack, Y. Yan, M. Cockburn, The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk, J. Photochem. Photobiol., B, 2006, 85, 198–204.
    CAS PubMed Google Scholar
  84. I. H. Langford, G. Bentham, A. L. McDonald, Multi-level modelling of geographically aggregated health data: a case study on malignant melanoma mortality and UV exposure in the European Community, Stat. Med., 1998, 17, 41–57.
    CAS PubMed Google Scholar
  85. J. Moan, A. Dahlback, R. B. Setlow, Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation, Photochem. Photobiol., 1999, 70, 243–247.
    CAS PubMed Google Scholar
  86. S. Q. Wang, R. Setlow, M. Berwick, D. Polsky, A. A. Marghoob, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: a review, J. Am. Acad. Dermatol., 2001, 44, 837–846.
    CAS PubMed Google Scholar
  87. A. D. Woodhead, R. B. Setlow, M. Tanaka, Environmental factors in nonmelanoma and melanoma skin cancer, J. Epidemiol., 1999, 9, S102–S114.
    CAS PubMed Google Scholar
  88. F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60.
    PubMed Google Scholar
  89. F. R. de Gruijl, Photocarcinogenesis: UVA vs. UVB radiation, Skin Pharmacol. Physiol., 2002, 15, 316–320.
    Google Scholar
  90. A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18, 1013–1020.
    PubMed Google Scholar
  91. P. Autier, J. F. Dore, F. Lejeune, K. F. Koelmel, O. Geffeler, P. Hille, J. P. Cesarini, D. Lienard, A. Liabeuf, M. Joarlette, et al., Cutaneous malignant melanoma and exposure to sunlamps or sunbeds: an EORTC multicenter case-control study in Belgium, France and Germany. EORTC Melanoma Cooperative Group, Int. J. Cancer, 1994, 58, 809–813.
    CAS PubMed Google Scholar
  92. IARC Working Group, The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: A systematic review, Int. J. Cancer, 2007, 120, 1116–1122.
    Google Scholar
  93. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.
    CAS PubMed PubMed Central Google Scholar
  94. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.
    CAS PubMed Google Scholar
  95. R. D. Ley, Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica, Cancer Res., 1997, 57, 3682–3684.
    CAS PubMed Google Scholar
  96. R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670.
    CAS PubMed PubMed Central Google Scholar
  97. D. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames, I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9329–9334.
    CAS PubMed PubMed Central Google Scholar
  98. E. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet B but not ultraviolet A radiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376.
    PubMed Google Scholar
  99. A. Kamb, D. Shattuck-Eidens, R. Eeles, Q. Liu, N. A. Gruis, W. Ding, C. Hussey, T. Tran, Y. Miki, J. Weaver-Feldhaus, et al., Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus, Nat. Genet., 1994, 8, 22–26.
    CAS Google Scholar
  100. T. Hocker, H. Tsao, Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants, Hum. Mutat., 2007, 28, 578–588.
    CAS PubMed Google Scholar
  101. P. M. Pollock, F. Yu, L. Qiu, P. G. Parsons, N. K. Hayward, Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines, Oncogene, 1995, 11, 663–668.
    CAS PubMed Google Scholar
  102. A. Besaratinia, G. P. Pfeifer, Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma, Hum. Mutat., 2008, 29, 983–991.
    CAS PubMed Google Scholar
  103. N. E. Thomas, M. Berwick, M. Cordeiro-Stone, Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation?, J. Invest. Dermatol., 2006, 126, 1693–1696.
    CAS PubMed Google Scholar
  104. C. D. Van Raamsdonk, K. G. Griewank, M. B. Crosby, M. C. Garrido, S. Vemula, T. Wiesner, A. C. Obenauf, W. Wackernagel, G. Green, N. Bouvier, M. M. Sozen, G. Baimukanova, R. Roy, A. Heguy, I. Dolgalev, R. Khanin, K. Busam, M. R. Speicher, J. O’Brien, B. C. Bastian, Mutations in GNA11 in uveal melanoma, N. Engl. J. Med., 2010, 363, 2191–2199.
    PubMed PubMed Central Google Scholar
  105. A. Besaratinia, G. P. Pfeifer, Uveal melanoma and GNA11 mutations: a new piece added to the puzzle, Pigm. Cell Melanoma Res., 2011, 24, 18–20.
    CAS Google Scholar
  106. Z. A. Abdel-Malek, A. L. Kadekaro, V. B. Swope, Stepping up melanocytes to the challenge of UV exposure, Pigm. Cell Melanoma Res., 2010, 23, 171–186.
    CAS Google Scholar
  107. G. G. McGill, M. Horstmann, H. R. Widlund, J. Du, G. Motyckova, E. K. Nishimura, Y. L. Lin, S. Ramaswamy, W. Avery, H. F. Ding, S. A. Jordan, I. J. Jackson, S. J. Korsmeyer, T. R. Golub, D. E. Fisher, Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability, Cell, 2002, 109, 707–718.
    CAS PubMed Google Scholar
  108. E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, M. R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2009, 463, 191–196.
    PubMed PubMed Central Google Scholar
  109. G. P. Pfeifer, Environmental exposures and mutational patterns of cancer genomes, Genome Med., 2010, 2, 54.
    PubMed PubMed Central Google Scholar
  110. I. Mellon, G. Spivak, P. C. Hanawalt, Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene, Cell, 1987, 51, 241–249.
    CAS PubMed Google Scholar
  111. C. Greenman, P. Stephens, R. Smith, G. L. Dalgliesh, C. Hunter, G. Bignell, H. Davies, J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E. E. Schmidt, T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, A. Jenkinson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D. P. Cahill, D. N. Louis, P. Goldstraw, A. G. Nicholson, F. Brasseur, L. Looijenga, B. L. Weber, Y. E. Chiew, A. DeFazio, M. F. Greaves, A. R. Green, P. Campbell, E. Birney, D. F. Easton, G. Chenevix-Trench, M. H. Tan, S. K. Khoo, B. T. Teh, S. T. Yuen, S. Y. Leung, R. Wooster, P. A. Futreal, M. R. Stratton, Patterns of somatic mutation in human cancer genomes, Nature, 2007, 446, 153–158.
    CAS PubMed PubMed Central Google Scholar
  112. X. Wei, V. Walia, J. C. Lin, J. K. Teer, T. D. Prickett, J. Gartner, S. Davis, K. Stemke-Hale, M. A. Davies, J. E. Gershenwald, W. Robinson, S. Robinson, S. A. Rosenberg, Y. Samuels, Exome sequencing identifies GRIN2A as frequently mutated in melanoma, Nat. Genet., 2011, 43, 442–446.
    CAS PubMed PubMed Central Google Scholar

Download references