The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos (original) (raw)

References

  1. Kume, S. Role of the inositol 1,4,5-trisphosphate receptor in early embryonic development. Cell. Mol. Life Sci. 56, 296–304 (1999)
    Article ADS CAS PubMed Google Scholar
  2. Kume, S. et al. Role of inositol 1,4,5-trisphosphate receptor in ventral signalling in Xenopus embryos. Science 278, 1940–1943 (1997)
    Article ADS CAS PubMed Google Scholar
  3. Ault, K. T., Durmowicz, G., Galione, A., Harger, P. L. & Busa, W. B. Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. Development 122, 2033–2041 (1996)
    CAS PubMed Google Scholar
  4. Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R. & Moon, R. T. The Wnt/Ca2+ pathway. Trends Genet. 16, 279–283 (2000)
    Article PubMed Google Scholar
  5. Torres, M. A. et al. Activities of the Wnt-1 class of secreted signalling factors are antagonized by the Wnt-5A class and by a dominant negative Cadherin in early Xenopus development. J. Cell Biol. 133, 1123–1137 (1996)
    Article CAS PubMed Google Scholar
  6. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997)
    Article CAS PubMed Google Scholar
  7. Gimlich, R. L. & Gerhart, J. C. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104, 117–130 (1984)
    Article CAS PubMed Google Scholar
  8. Woodland, H. R. & Jones, E. A. The development of an assay to detect mRNAs that affect early development. Development 101, 925–930 (1987)
    CAS PubMed Google Scholar
  9. Chow, C. W., Rincon, M. & Davis, R. J. Requirement for transcription factor NFAT in interleukin-2 expression. Mol. Cell. Biol. 19, 2300–2307 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  10. Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994)
    Article ADS CAS PubMed Google Scholar
  11. Tsuruta, L. et al. Cyclic AMP inhibits expression of the IL-2 gene through the nuclear factor of activated T cells (NF-AT) site, and transfection of NF-AT cDNAs abrogates the sensitivity of EL-4 cells to cyclic AMP. J. Immunol. 154, 5255–5264 (1995)
    CAS PubMed Google Scholar
  12. Saneyoshi, T., Kume, S., Natsume, T. & Mikoshiba, K. Molecular cloning and expression profile of Xenopus calcineurin A subunit. Biochim. Biophys. Acta 1499, 164–170 (2000)
    Article CAS PubMed Google Scholar
  13. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of wnt and a frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997)
    Article ADS CAS PubMed Google Scholar
  14. Moon, R. T. et al. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97–111 (1993)
    CAS PubMed Google Scholar
  15. Kühl, M., Sheldahl, L. C., Malbon, C. C. & Moon, R. T. Ca2+/calmodulin dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000)
    Article PubMed Google Scholar
  16. Olson, D. J. & Gibo, D. M. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res. 241, 134–141 (1998)
    Article CAS PubMed Google Scholar
  17. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988)
    Article CAS PubMed Google Scholar
  18. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996)
    Article CAS PubMed Google Scholar
  19. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, J. M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997)
    Article CAS PubMed Google Scholar
  20. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996)
    Article CAS PubMed Google Scholar
  21. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  22. McKendry, R., Hsu, S. C., Harland, R. M. & Grosschedl, R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420–431 (1997)
    Article CAS PubMed Google Scholar
  23. He, X., St-Jeannet, J., Woodgett, J., Varmus, H. & Dawid, I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995)
    Article ADS CAS PubMed Google Scholar
  24. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996)
    Article CAS PubMed Google Scholar
  25. Beals, C. R., Sheridan, C. M., Turck, C. W., Gadner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997)
    Article CAS PubMed Google Scholar
  26. Hedgepeth, C. M. et al. Activation of the Wnt signalling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997)
    Article CAS PubMed Google Scholar
  27. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and university of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000)
    Article CAS Google Scholar
  28. Musci, T. J., Amaya, E. & Kirschner, M. W. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc. Natl Acad. Sci. USA 87, 8365–8369 (1990)
    Article ADS CAS PubMed PubMed Central Google Scholar
  29. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1967)
    Google Scholar

Download references