Clapper, D. L., Walseth, T. F., Dargei, P. J. & Lee, H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem.262, 9561?9568 ( 1987). CASPubMed Google Scholar
Genazzini, A. A. & Galione, A. A. Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol. Sci.18, 108?110 (1997). Article Google Scholar
Mao, C. G. et al. Molecular cloning and characterization of SCaMPER, a sphingolipid Ca2+ release-mediating protein from endoplasmic reticulum. Proc. Natl Acad. Sci. USA93, 1993? 1996 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cancela, J. M. & Petersen, O. H. The cyclic ADP ribose antagonist 8-NH2-cADP-ribose blocks cholecystokinin-evoked cytosolic Ca2+ spiking in pancreatic acinar cells. Pfluger's Arch.435, 746?748 (1998). ArticleCAS Google Scholar
Young, K. W., Challiss, R. A. J., Nahorski, S. R., & Mackrill, J. J. Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem. J.343, 45?52 (1999). ArticleCASPubMedPubMed Central Google Scholar
Putney, J. W. Jr. A model for receptor-regulated calcium entry. Cell Calcium7, 1?12 ( 1986). ArticleCASPubMed Google Scholar
Hofmann, T. et al. Direct activation of human TRP6 and TRPC3 channels by diacylglycerol . Nature397, 259?263 (1999).The mammalian homologues of theDrosophilatransient receptor potential (TRP) proteins function as Ca2+channels but their control is still largely unknown. This paper suggests that some may be regulated by diacylglycerol. ArticleCASPubMed Google Scholar
Broad, L. M., Cannon, T. R. & Taylor, C. W. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J. Physiol.517, 121?134 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Mignen, O. & Shuttleworth, T. J. IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel . J. Biol. Chem.275, 9114? 9119 (2000). ArticleCASPubMed Google Scholar
Kiselyov, K. et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature396, 478?482 (1998).Some of the first evidence to indicate that inositol-1,4,5-trisphosphate receptors might be directly linked to Ca2+channels in the plasma membrane. ArticleCASPubMed Google Scholar
Boulay, G. et al. Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): Evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc. Natl Acad. Sci. USA96, 14955?14960 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bootman, M. D. & Lipp, P. Calcium signalling: Ringing changes to the ?bell-shaped curve?. Curr. Biol.9, R876?R878 ( 1999). ArticleCASPubMed Google Scholar
Mermelstein, P. G., Bito, H., Deisseroth, K. & Tsien, R. W. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels support a selective response to EPSPs in preference to action potentials . J. Neurosci.20, 266? 273 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, T., Barbara, J. G., Nakamura, K. & Ross, W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron24, 727? 737 (1999).Direct evidence that the inositol-1,4,5-trisphosphate receptor may act as a coincident detector, integrating a Ca2+signal coming from an action potential and inositol-1,4,5-trisphosphate generated by a metabotropic receptor. ArticleCASPubMed Google Scholar
Cancela, J. M., Churchill, G. C. & Galione, A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature398, 74?76 (1999). ArticleCASPubMed Google Scholar
Fierro, L. & Llano, I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J. Physiol.496, 617?625 (1996). Article Google Scholar
Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev.74, 595?636 ( 1994). ArticleCASPubMed Google Scholar
Blaustein, M. P. & Lederer, W. J. Sodium/calcium exchange: Its physiological implications. Physiol. Rev.79, 763?854 (1999). ArticleCASPubMed Google Scholar
Budd, S. L. & Nicholls, D. G. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J. Neurochem.66, 403?411 ( 1996). ArticleCASPubMed Google Scholar
Jouaville, L. S., Ichas, F., Holmuhamedor, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature377, 438?441 ( 1995). ArticleCASPubMed Google Scholar
Collins, T. J., Lipp, P., Berridge, M. J., Li, W. & Bootman, M. D. Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem. J.347, 593?600 (2000). ArticleCASPubMedPubMed Central Google Scholar
Duchen, M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol.516 , 1?17 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science262, 744?747 (1993).The first demonstration that mitochondria sense the high concentrations of Ca2+that build up in the vicinity of intracellular channels such as the inositol-1,4,5-trisphosphate receptor. ArticleCASPubMed Google Scholar
Csordas, G., Thomas, A. P. & Hajnoczky, G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J.18, 96?108 (1999). Article Google Scholar
Leissring, M. A. et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol.149, 793?797 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bernadi, P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev.79, 1127? 1155 (1999). Article Google Scholar
Ichas, F., Jouaville, L. S. & Mazat, J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell89, 1145?1153 (1997). ArticleCASPubMed Google Scholar
Lipp, P. & Niggli, E. A hierarchical concept of cellular and subcellular Ca2+ signaling. Prog. Biophys. Mol. Biol.65, 265?296 ( 1996). ArticleCASPubMed Google Scholar
Lipp, P. & Niggli, E. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes. J. Physiol.508, 801? 809 (1998) ArticleCASPubMedPubMed Central Google Scholar
Bootman, M., Niggli, E., Berridge, M. J. & Lipp, P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J. Physiol.499, 307?314 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks ? elementary events underlying excitation-contraction coupling in heart-muscle. Science262, 740?744 (1993). One of the first visualizations of the localized Ca2+signal emerging from small groups of ryanodine receptors. Such elementary events are the basic building blocks of Ca2+signals. ArticleCASPubMed Google Scholar
Yao, Y., Coi, J. & Parker, I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol.482, 533?553 (1995). ArticleCASPubMedPubMed Central Google Scholar
Sun, X. -P., Callamaras, N., Marchant, J. S. & Parker, I. A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J. Physiol.509, 67?80 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thomas, D. Lipp, P., Berridge, M. J. & Bootman, M. D. Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. J. Biol. Chem.273, 27130?27136 (1998). Article Google Scholar
Lansley, A. B. & Sanderson, M. J. Regulation of airway ciliary activity by Ca2+: Simultaneous measurement of beat frequency and intracellular Ca2+. Biophys. J.77, 629?638 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Robb-Gaspers, L. D. & Thomas, A. P. Coordination of Ca2+ signaling by intercellular propogation of Ca2+ waves in the intact liver. J. Biol. Chem.270, 8102?8107 (1995). The first demonstration of intercellular Ca2+waves travelling through large numbers of cells in an intact organ. ArticleCASPubMed Google Scholar
Zimmermann, B. & Walz, B. The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland. EMBO J.18, 3222? 3231 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tse, F. W. & Tse, A. Regulation of exocytosis via release of Ca2+ from intracellular stores. BioEssays21, 861?865 (1999). ArticleCASPubMed Google Scholar
Maturana, A. D. et al. Angiotensin II negatively modulates L-type calcium channels through a pertussis toxin-sensitive G protein in adrenal glomerulosa cells . J. Biol. Chem.274, 19943? 19948 (1999). ArticleCASPubMed Google Scholar
Lipp, P., Thomas, D., Berridge, M. J. & Bootman, M. D. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J.16, 7166?7173 ( 1997).A demonstration that Ca2+puffs are concentrated around the nucleus and are therefore able to feed Ca2+directly into the nucleoplasm. ArticleCASPubMedPubMed Central Google Scholar
DeKoninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science279, 227?230 (1998). ArticleCAS Google Scholar
Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell95, 307?318 (1998). ArticleCASPubMed Google Scholar
Li, W. H., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature392, 936?941 ( 1998). ArticleCASPubMed Google Scholar
Dolmetsch, R. E., Xu, K. L. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature392, 933? 936 (1998). ArticleCASPubMed Google Scholar
Ding, J. M. et al. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature394, 381?384 (1998). ArticleCASPubMed Google Scholar
Hamada, T. et al. The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neurosci. Lett.263 , 125?128 (1999). ArticleCASPubMed Google Scholar
Miyazaki, S. et al. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol.158, 62?78 (1993). ArticleCASPubMed Google Scholar
Jones, K. T., Matsuda, M., Parrington, J., Katan, M. & Swann, K. Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate, and mouse eggs. Biochem. J.346, 743?749 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Swanson, C. A., Arkin, A. P. & Ross, J. An endogenous calcium oscillator may control early embryonic division. Proc. Natl Acad. Sci. USA94, 1194?119 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kono, T., Jones, K. T., BosMikich, A., Whittingham, D. G. & Carroll, J. A cell cycle-associated change in Ca2+ releasing activity leads to the generation of Ca2+ transients in mouse embryos during the first mitotic division . J. Cell Biol.132, 915? 923(1996). ArticleCASPubMed Google Scholar
Chang, D. C. & Meng, C. L A localized elevation of cytosolic-free calcium is associated with cytokinesis in the zebrafish embryo. J. Cell Biol.131, 1539?1545 (1995). ArticleCASPubMed Google Scholar
Keating, T. J., Cork, R. J. & Robinson, K. R. Intracellular free calcium oscillations in normal and cleavage-blocked embryos and artificially activated eggs of Xenopus-laevis . J. Cell Sci.107, 2229? 2237 (1994). CASPubMed Google Scholar
Kubota, H. Y., Yoshimoto, Y. & Hiramoto, Y. Oscillation of intracellular free calcium in cleaving and cleavage-arrested embryos of Xenopus-laevis. Dev. Biol.160, 512?518 ( 1993). Article Google Scholar
Stith, B. J., Goalstone, M., Silva, S. & Jaynes, C. Inositol 1,4,5-trisphosphate mass changes from fertilization through 1st-cleavage in Xenopus laevis . Mol. Biol. Cell4, 435? 443 (1993). ArticleCASPubMedPubMed Central Google Scholar
Han, J. K. Oscillation of inositol polyphosphates in the embryonic cleavage cycle of the Xenopus laevis. Biochem. Biophys. Res. Commun.206, 775?780 (1995). ArticleCASPubMed Google Scholar
Ciapa, B., Pesando, D., Wilding, M. & Whitaker, M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature368, 875?878 ( 1994).Some of the first evidence that cyclic changes in inositol-1,4,5-trisphosphate and Ca2+are responsible for controlling certain cell-cycle events, especially those occurring at mitosis. ArticleCASPubMed Google Scholar
Gilland, E., Miller, A. L., Karplus, E., Baker, R. & Webb, S. E. Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc. Natl Acad. Sci. USA96, 157?161(1999). ArticleCASPubMedPubMed Central Google Scholar
Webb, S. E. & Miller, A. L. Calcium signalling during zebrafish embryonic development. Bioessays22, 113 ?123 (2000). ArticleCASPubMed Google Scholar
Creton, R., Speksnijder, J. E. & Jaffe, L. F. Patterns of free calcium in zebrafish embryos. J. Cell Sci.111, 1613?1622 (1998). CASPubMed Google Scholar
Maslanski, J. A, Leshko, L. & Busa, W. B. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science256, 243?245(1992). ArticleCASPubMed Google Scholar
Kume, S., Muto, A., Okano, H. & Mikoshiba, K. Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis . Mech. Dev.66, 157?168 (1997). ArticleCASPubMed Google Scholar
Reinhard, E. et al. Localized calcium signals in early zebrafish development. Dev. Biol.170, 50?71( 1995). ArticleCASPubMed Google Scholar
Creton, R., Kreiling, J. A. & Jaffe, L. F. Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos. Dev. Biol.217, 375?385 (2000). ArticleCASPubMed Google Scholar
K¨hl, M., Sheldahl, L. C., Malbon, C. C. & Moon, R. T. Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem.275, 12701?12711 (2000). Article Google Scholar
Kume, S. et al. Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos. Science278, 1940?1943 (1997). A role for Ca2+in setting up the dorsoventral axis inXenopusoocytes was demonstrated by showing that the axis was modified by inhibiting the activity of the inositol-1,4,5-trisphosphate receptor. ArticleCASPubMed Google Scholar
Buonanno, A. & Fields, R. D. Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr. Opin. Neurobiol.9, 110?120 ( 1999). ArticleCASPubMed Google Scholar
Ferrari, M. B., Ribbeck, K., Hagler, D. J. & Spitzer, N. C. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J. Cell Biol.141, 1349 ?1356 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gu, X. N. & Spitzer, N. C. Breaking the code: Regulation of neuronal differentiation by spontaneous calcium transients. Dev. Neurosci.19, 33?41(1997). ArticleCASPubMed Google Scholar
Carey, M. B. & Matsumoto, S. G. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev. Biol.215, 298?313 (1999). ArticleCASPubMed Google Scholar
Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature397, 350?355( 1999).By studying Ca2+signals in individual neurons growingin vivo, it was possible to show that brief Ca2+transients function both in the extension of the axon and in its ability to locate its target. ArticleCASPubMed Google Scholar
Wong, R. O. L. Retinal waves and visual system development. Annu. Rev. Neurosci.22, 29?47 ( 1999). ArticleCASPubMed Google Scholar
Lu, K. P. & Means, A. R. Regulation of the cell-cycle by calcium and calmodulin. Endocrine Rev.14, 40?58 (1993). ArticleCAS Google Scholar
Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82?86 (1998). ArticleCASPubMed Google Scholar
Akagi, K., Nagao, T. & Urushidani, T. Correlation between Ca2+ oscillation and cell proliferation via CCKB/gastrin receptor. Biochim. Biophys. Acta1452, 243?253 (1999). ArticleCASPubMed Google Scholar
Scharenberg, A. M. & Kinet, J. P. Ptdlns-3,4,5-P 3: A regulatory nexus between tyrosine kinases and sustained calcium signals. Cell94, 5?8 (1998). ArticleCASPubMed Google Scholar
Lewis, R. S. & Cahalan, M. D. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol.13, 623?653 (1995). ArticleCASPubMed Google Scholar
Hoth, M., Fanger, C. M. & Lewis, R. S. Mitochondrial regulation of store-operated calcium signalling in T lymphocytes. J. Cell Biol.137, 633?648 (1997). ArticleCASPubMedPubMed Central Google Scholar
Crabtree, G. R. Generic signals and specific outcomes: Signaling through Ca2+, calcineurin, and NF-AT. Cell96, 611? 614 (1999). ArticleCASPubMed Google Scholar
Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P. & Crabtree, G. R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature383, 837?840 ( 1996). ArticleCASPubMed Google Scholar
Chawla, S., Hardingham, G. E., Quinn, D. R. & Bading, H. CBP: A signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science281, 1505?1509 (1998). ArticleCASPubMed Google Scholar
Hardingham, G. E., Chawla, S., Cruzalegui, F. H. & Bading, H. Control of recruitment and transcription?activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron22, 789?798 ( 1999). ArticleCASPubMed Google Scholar
Wang, J. H., Moreira, K. M., Campos, B., Kaetzel, M. A. & Dedman, J. R. Targeted neutralization of calmodulin in the nucleus blocks DNA synthesis and cell cycle progression. Biochim. Biophys. Acta1313, 223?228 (1996). ArticlePubMed Google Scholar
Yang, H., Shen, F., Herenyiova, M. & Weber, G. Phospholipase C (EC 3. 1. 4. 11): A malignancy linked signal transduction enzyme. Anticancer Res.18, 1399?1404 (1998). CASPubMed Google Scholar
Smith, M. R. et al. Overexpression of phosphoinositide-specific phospholipase C γ in NIH 3T3 cells promotes transformation and tumorigenicity. Carcinogenesis19, 177?185 (1998). ArticleCASPubMed Google Scholar
Rizzo, M. T. & Weber, G. L. Phosphatidylinositol 4-kinase ? an enzyme linked with proliferation and malignancy. Cancer Res.54, 2611?2614 ( 1994). CASPubMed Google Scholar
Benzaquen, L. R., Brugnara, C., Byers, H. R., Gattoni-Celli, S. & Halperin, J. A. Clotrimazole inhibits cell proliferation in vitro and in vivo. Nature Med.1, 534?540 (1995). ArticleCASPubMed Google Scholar
Nie, L., Mogami, H., Kanzaki, M., Shibata, H. & Kojima, I. Blockade of DNA synthesis induced by platelet-derived growth factor by tranilast, an inhibitor of Ca2+ entry, in vascular smooth muscle cells. Mol. Pharm.50, 763?769 (1996). Google Scholar
Haverstick, D. M., Heady, T. N., Macdonald, T. L. & Gray, L. S. Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res.60, 1002?1008 (2000). CASPubMed Google Scholar
Kohn, E. C. et al. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res.56 , 569?573 (1996). CASPubMed Google Scholar
Gao, B. et al. Functional properties of a new voltage-dependent calcium channel α 2δ auxiliary subunit gene (CACNA2D2). J. Biol. Chem.275, 12237?12242 ( 2000).One of the first indications that malignancy might be linked to an alteration in Ca2+signalling. ArticleCASPubMed Google Scholar
Szalai, G., Krishnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J.18, 6349? 6361 (1999). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399, 483?487 (1999). ArticleCASPubMed Google Scholar
Barr, P. J. & Tomei, L. D. Apoptosis and its role in human disease. Biotechnology12, 487? 493 (1994). ArticleCASPubMed Google Scholar
Reed, J. C. Bcl-2 and the regulation of programmed cell-death. J. Cell Biol.124, 1?6 (1994 ). ArticleCASPubMed Google Scholar
Murphy, A., Bredesen, D. E., Cortopassi, G., Wang, E. & Fiskum, G. Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl Acad. Sci. USA93, 9893?9898 ( 1996). ArticleCASPubMedPubMed Central Google Scholar
Vander Heiden, M., Chandel, N. S., Williamson, E. K., Schumacker, P. T. & Thompson, C. B. Bcl-x L regulates the membrane potential and volume homeostasis of mitochondria . Cell91, 627?637 (1997). Article Google Scholar
Zhu, L. P. et al. Modulation of mitochondrial Ca2+ homeostasis by Bcl-2. J. Biol. Chem.274, 33267? 33273 (1999).Evidence that mitochondrial metabolism can be modulated by the anti-apoptotic modulator Bcl-2. ArticleCASPubMed Google Scholar
Kuo, T. H. et al. Modulation of endoplasmic reticulum calcium pump by Bcl-2 . Oncogene17, 1903?1910 (1998). ArticleCASPubMed Google Scholar
Foyouzi-Youssefi, R. et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl Acad. Sci. USA97, 5723?5728 (2000) ArticleCASPubMedPubMed Central Google Scholar
Pinton, P. et al. Reduced loading on intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Biol. Chem.275, 857? 862 (2000). Google Scholar
Schlossmann, J. et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature404, 197?201 ( 2000). ArticleCASPubMed Google Scholar
Morimoto, A. M. et al. The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase-activity. Oncogene19, 200?209 (2000). ArticleCASPubMed Google Scholar
Lev, S. et al. Protein-tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion-channel and map kinase functions. Nature376, 737?745 (1995). ArticleCASPubMed Google Scholar
Brinson, A. E. et al. Regulation of a calcium-dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet-derived growth factor. Dependence on calcium and the actin cytoskeleton. J. Biol. Chem.273, 1711?1718 ( 1998). ArticleCASPubMed Google Scholar
Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinases of proHB?EGF. Nature402, 884?888 (1999). ArticleCASPubMed Google Scholar