Abel's binomial theorem (original) (raw)
From Wikipedia, the free encyclopedia
Mathematical identity involving sums of binomial coefficients
Abel's binomial theorem, named after Niels Henrik Abel, is a mathematical identity involving sums of binomial coefficients. It states the following:
∑ k = 0 m ( m k ) ( w + m − k ) m − k − 1 ( z + k ) k = w − 1 ( z + w + m ) m . {\displaystyle \sum _{k=0}^{m}{\binom {m}{k}}(w+m-k)^{m-k-1}(z+k)^{k}=w^{-1}(z+w+m)^{m}.}
( 2 0 ) ( w + 2 ) 1 ( z + 0 ) 0 + ( 2 1 ) ( w + 1 ) 0 ( z + 1 ) 1 + ( 2 2 ) ( w + 0 ) − 1 ( z + 2 ) 2 = ( w + 2 ) + 2 ( z + 1 ) + ( z + 2 ) 2 w = ( z + w + 2 ) 2 w . {\displaystyle {\begin{aligned}&{}\quad {\binom {2}{0}}(w+2)^{1}(z+0)^{0}+{\binom {2}{1}}(w+1)^{0}(z+1)^{1}+{\binom {2}{2}}(w+0)^{-1}(z+2)^{2}\\&=(w+2)+2(z+1)+{\frac {(z+2)^{2}}{w}}\\&={\frac {(z+w+2)^{2}}{w}}.\end{aligned}}}