Abel's Binomial Theorem (original) (raw)
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology
Alphabetical Index New in MathWorld
The identity
(Bhatnagar 1995, p. 51). There are a host of other such binomial identities.
See also
Binomial Identity, _q_-Abel'_s_Theorem
Explore with Wolfram|Alpha
References
Abel, N. H. "Beweis eines Ausdrucks, von welchem die Binomial-Formel ein einzelner Fall ist." J. reine angew. Math. 1, 159-160, 1826. Reprinted in Œ_uvres Complètes, 2nd ed., Vol. 1._ pp. 102-103, 1881.Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 51, 1995.Riordan, J. Combinatorial Identities. New York: Wiley, p. 18, 1979.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Abel's Binomial Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AbelsBinomialTheorem.html