Abel's Binomial Theorem (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


The identity

 sum_(y=0)^m(m; y)(w+m-y)^(m-y-1)(z+y)^y=w^(-1)(z+w+m)^m

(Bhatnagar 1995, p. 51). There are a host of other such binomial identities.


See also

Binomial Identity, _q_-Abel'_s_Theorem

Explore with Wolfram|Alpha

References

Abel, N. H. "Beweis eines Ausdrucks, von welchem die Binomial-Formel ein einzelner Fall ist." J. reine angew. Math. 1, 159-160, 1826. Reprinted in Œ_uvres Complètes, 2nd ed., Vol. 1._ pp. 102-103, 1881.Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 51, 1995.Riordan, J. Combinatorial Identities. New York: Wiley, p. 18, 1979.

Referenced on Wolfram|Alpha

Abel's Binomial Theorem

Cite this as:

Weisstein, Eric W. "Abel's Binomial Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AbelsBinomialTheorem.html

Subject classifications