Conjunction (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


A product of ANDs, denoted

  ^ _(k=1)^nA_k.

The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions

 A_lambda= union _(i in lambda)A_i,

where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2,A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186).

A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30).

The Wolfram Language command Conjunction[_expr_,{a1, a2, ...}] gives the conjunction of expr over all choices of the Boolean variables a_i.


See also

AND, Boolean Algebra, Boolean Function, Complete Product, Disjunction, NOT,OR

Explore with Wolfram|Alpha

References

Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 186, 1974.Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.

Referenced on Wolfram|Alpha

Conjunction

Cite this as:

Weisstein, Eric W. "Conjunction." FromMathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Conjunction.html

Subject classifications