filtration (original) (raw)

Let M=(W,R,V) be a Kripke model for a modal logic L. Let Δ be a set of wff’s. Define a binary relationMathworldPlanetmath ∼Δ on W:

w∼Δu iff ⊧wA iff ⊧uA for any A∈Δ.

Then ∼Δ is an equivalence relationMathworldPlanetmath on W. Let W′ be the set of equivalence classesMathworldPlanetmath of ∼Δ on W. It is easy to see that if Δ is finite, so is W′. Next, let

V′⁢(p):={[w]∈W′∣w∈V⁢(p)}.

Then V′ is a well-defined function. We call a binary relation R′ on W′ a filtrationPlanetmathPlanetmath of R if

The triple M′:=(W′,R′,V′) is called a filtration of the model M.

Proposition 1.