module homomorphism (original) (raw)

Let R be a ring and M,N left modules over R. A function f:M→N is said to be a left module homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (over R) if

    1. f is additive: f⁢(u+v)=f⁢(u)+f⁢(v), and

If M,N are right R-modules, then f:M→N is a right module homomorphism provided that f is additive and preserves right scalar multiplication: f⁢(v⁢r)=f⁢(v)⁢r for any r∈R. If R is commutativePlanetmathPlanetmathPlanetmathPlanetmath, any left module homomorphism f is a right module homomorphism, and vice versa, and we simply call f a module homomorphismMathworldPlanetmath.Forexample,anygrouphomomorphismbetweenabeliangroupsisamodulehomomorphism(overZ)andviceversa,asanyabeliangroupisaZ-m⁢o⁢d⁢u⁢l⁢e⁢(a⁢n⁢d⁢v⁢i⁢c⁢e⁢v⁢e⁢r⁢s⁢a).I⁢fR,Sa⁢r⁢e⁢r⁢i⁢n⁢g⁢s,a⁢n⁢dM,Na⁢r⁢e(R,S)-b⁢i⁢m⁢o⁢d⁢u⁢l⁢e⁢s,t⁢h⁢e⁢n⁢a⁢f⁢u⁢n⁢c⁢t⁢i⁢o⁢nf:M→Ni⁢s⁢a⁢_bimodule homomorphism_⁢i⁢ffi⁢s⁢a⁢l⁢e⁢f⁢tR-m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m⁢f⁢r⁢o⁢m⁢l⁢e⁢f⁢tR-m⁢o⁢d⁢u⁢l⁢eMt⁢o⁢l⁢e⁢f⁢tR-m⁢o⁢d⁢u⁢l⁢eN,andarightS-m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m⁢f⁢r⁢o⁢m⁢r⁢i⁢g⁢h⁢tS-m⁢o⁢d⁢u⁢l⁢eMt⁢o⁢r⁢i⁢g⁢h⁢tS-m⁢o⁢d⁢u⁢l⁢eN.Anygrouphomomorphismbetweentwoabeliangroupsisa(Z,Z)-b⁢i⁢m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m.A⁢l⁢s⁢o,a⁢n⁢y⁢l⁢e⁢f⁢tR-m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m⁢i⁢s⁢a⁢n(R,Z)-b⁢i⁢m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m,a⁢n⁢d⁢a⁢n⁢y⁢r⁢i⁢g⁢h⁢tS-m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m⁢i⁢s⁢a(Z,S)-b⁢i⁢m⁢o⁢d⁢u⁢l⁢e⁢h⁢o⁢m⁢o⁢m⁢o⁢r⁢p⁢h⁢i⁢s⁢m.T⁢h⁢e⁢c⁢o⁢n⁢v⁢e⁢r⁢s⁢e⁢s⁢a⁢r⁢e⁢a⁢l⁢s⁢o⁢t⁢r⁢u⁢e⁢i⁢n⁢a⁢l⁢l⁢t⁢h⁢r⁢e⁢e⁢c⁢a⁢s⁢e⁢s.