normal subgroup (original) (raw)

A subgroupMathworldPlanetmathPlanetmath H of a group G is normal if a⁢H=H⁢a for all a∈G. Equivalently, H⊂G is normal if and only if a⁢H⁢a-1=H for all a∈G, i.e., if and only if each conjugacy classMathworldPlanetmathPlanetmath of G is either entirely inside H or entirely outside H.

The notation H⁢⊴⁢G or H◁G is often used to denote that H is a normal subgroupMathworldPlanetmath of G.

The kernel ker⁡(f) of any group homomorphismMathworldPlanetmath f:G⟶G′ is a normal subgroup of G. More surprisingly, the converseMathworldPlanetmath is also true: any normal subgroup H⊂G is the kernel of some homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (one of these being the projection map ρ:G⟶G/H, where G/H is the quotient groupMathworldPlanetmath).

Title normal subgroup
Canonical name NormalSubgroup
Date of creation 2013-03-22 12:08:07
Last modified on 2013-03-22 12:08:07
Owner djao (24)
Last modified by djao (24)
Numerical id 11
Author djao (24)
Entry type Definition
Classification msc 20A05
Synonym normal
Related topic QuotientGroup
Related topic NormalizerMathworldPlanetmath
Defines normality