position vector (original) (raw)
In the space ℝ3, the vector
r→:=(x,y,z)=xi→+yj→+zk→ |
---|
directed from the origin to a point (x,y,z) is the position vector of this point. When the point is , r→ a vector field and its
a scalar .
The
- •
∇⋅r→= 3 - •
∇×r→=0→ - •
∇r=r→r=r→ 0 - •
∇1r=-r→r3=-r→ 0r2 - •
∇21r= 0
are valid, where r→ 0 is the unit vector having the direction of r→.
If c→ is a vector, U→:ℝ3→ℝ3 a vector function and f:ℝ→ℝ is a twice differentiable function, then the formulae
- •
∇(c→⋅r→)=c→ - •
∇⋅(c→×r→)= 0 - •
(U→⋅∇)r→=U→ - •
(U→×∇)⋅r→= 0 - •
(U→×∇)×r→=-2U→ - •
∇f(r)=f′(r)r→ 0 - •
∇2f(r)=f′′(r)+2rf′(r)
hold.
References
- 1 K. Väisälä: Vektorianalyysi. Werner Söderström Osakeyhtiö, Helsinki (1961).