The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives (original) (raw)
Zimmet, P., Alberti, K. G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature414, 782–787 (2001). ArticleCASPubMed Google Scholar
Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet378, 31–40 (2011). ArticleCASPubMed Google Scholar
Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract.87, 4–14 (2010). ArticleCASPubMed Google Scholar
Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA301, 2129–2140 (2009). ArticleCASPubMed Google Scholar
Dowse, G. K. et al. High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Mauritius Noncommunicable Disease Study Group. Diabetes39, 390–396 (1990). ArticleCASPubMed Google Scholar
Simmons, D., Williams, D. R. & Powell, M. J. Prevalence of diabetes in a predominantly Asian community: preliminary findings of the Coventry diabetes study. BMJ298, 18–21 (1989). ArticleCASPubMedPubMed Central Google Scholar
McNeely, M. J. & Boyko, E. J. Type 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care27, 66–69 (2004). ArticlePubMed Google Scholar
Yang, W. et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med.362, 1090–1101 (2010). ArticleCASPubMed Google Scholar
Mbanya, J. C., Motala, A. A., Sobngwi, E., Assah, F. K. & Enoru, S. T. Diabetes in sub-Saharan Africa. Lancet375, 2254–2266 (2010). ArticlePubMed Google Scholar
Abubakari, A. R. et al. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public Health123, 602–614 (2009). ArticleCASPubMed Google Scholar
Wändell, P. E. et al. Estimation of diabetes prevalence among immigrants from the Middle East in Sweden by using three different data sources. Diabetes Metab.34, 328–333 (2008). ArticlePubMed Google Scholar
Ramachandran, A., Mary, S., Yamuna, A., Murugesan, N. & Snehalatha, C. High prevalence of diabetes and cardiovascular risk factors associated with urbanization in India. Diabetes Care31, 893–898 (2008). ArticlePubMed Google Scholar
Ning, F. et al. Risk factors associated with the dramatic increase in the prevalence of diabetes in the adult Chinese population in Qingdao, China. Diabet. Med.26, 855–863 (2009). ArticleCASPubMed Google Scholar
Pinhas-Hamiel, O. & Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr.146, 693–700 (2005). ArticlePubMed Google Scholar
Liese, A. D. et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics118, 1510–1518 (2006). ArticlePubMed Google Scholar
Kitagawa, T., Owada, M., Urakami, T. & Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin. Pediatr. (Phila.)37, 111–115 (1998). ArticleCAS Google Scholar
Dabelea, D. et al. Incidence of diabetes in youth in the United States. JAMA297, 2716–2724 (2007). ArticlePubMed Google Scholar
Craig, M. E., Femia, G., Broyda, V., Lloyd, M. & Howard, N. J. Type 2 diabetes in Indigenous and non-Indigenous children and adolescents in New South Wales. Med. J. Aust.186, 497–499 (2007). PubMed Google Scholar
Dabelea, D. et al. Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia54, 535–539 (2011). ArticleCASPubMed Google Scholar
Williams, D. E. et al. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999–2000. Pediatrics116, 1122–1126 (2005). ArticlePubMed Google Scholar
Li, C., Ford, E. S., Zhao, G. & Mokdad, A. H. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care32, 342–347 (2009). ArticlePubMedPubMed Central Google Scholar
Sinha, R. et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med.346, 802–810 (2002). ArticleCASPubMed Google Scholar
Goran, M. I. et al. Impaired glucose tolerance and reduced beta-cell function in overweight Latino children with a positive family history for type 2 diabetes. J. Clin. Endocrinol. Metab.89, 207–212 (2004). ArticleCASPubMed Google Scholar
Rokholm, B., Baker, J. L. & Sorensen, T. I. The levelling off of the obesity epidemic since the year 1999—a review of evidence and perspectives. Obes. Rev.11, 835–846 (2010). ArticleCASPubMed Google Scholar
Mokdad, A. H. et al. Diabetes trends in the U.S.: 1990–1998. Diabetes Care23, 1278–1283 (2000). ArticleCASPubMed Google Scholar
Lawrence, J. M. et al. Diabetes in Hispanic American youth: prevalence, incidence, demographics, and clinical characteristics: the SEARCH for Diabetes in Youth Study. Diabetes Care32 (Suppl. 2), S123–S132 (2009). ArticlePubMedPubMed Central Google Scholar
Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (Lond.)32, 1431–1437 (2008). ArticleCAS Google Scholar
Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med.345, 790–797 (2001). ArticleCASPubMed Google Scholar
Narayan, K. M., Boyle, J. P., Thompson, T. J., Gregg, E. W. & Williamson, D. F. Effect of BMI on lifetime risk for diabetes in the U. S. Diabetes Care30, 1562–1566 (2007). ArticleCASPubMed Google Scholar
Schienkiewitz, A., Schulze, M. B., Hoffmann, K., Kroke, A. & Boeing, H. Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am. J. Clin. Nutr.84, 427–433 (2006). ArticleCASPubMed Google Scholar
Ruderman, N., Chisholm, D., Pi-Sunyer, X. & Schneider, S. The metabolically obese, normal-weight individual revisited. Diabetes47, 699–713 (1998). ArticleCASPubMed Google Scholar
Meigs, J. B. et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab.91, 2906–2912 (2006). ArticleCASPubMed Google Scholar
Arnlöv, J., Sundström, J., Ingelsson, E. & Lind, L. Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care34, 61–65 (2011). ArticleCASPubMed Google Scholar
Yoon, K.-H. et al. Epidemic obesity and type 2 diabetes in Asia. Lancet368, 1681–1688 (2006). ArticlePubMed Google Scholar
Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev.9 (Suppl. 1), 53–61 (2008). ArticlePubMed Google Scholar
Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes. Rev.3, 141–146 (2002). ArticleCASPubMed Google Scholar
Kadowaki, T. et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int. J. Obes. (Lond.)30, 1163–1165 (2006). ArticleCAS Google Scholar
Lear, S. A. et al. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am. J. Clin. Nutr.86, 353–359 (2007). ArticleCASPubMed Google Scholar
Lebovitz, H. E. & Banerji, M. A. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care28, 2322–2325 (2005). ArticlePubMed Google Scholar
Hwang, J. H. et al. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am. J. Physiol. Endocrinol. Metab.293, E1663–E1669 (2007). ArticleCASPubMed Google Scholar
Fraser, A. et al. Alanine aminotransferase, γ-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care32, 741–750 (2009). ArticleCASPubMedPubMed Central Google Scholar
Taylor, R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia51, 1781–1789 (2008). ArticleCASPubMed Google Scholar
Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med.359, 61–73 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pinney, S. E. & Simmons, R. A. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab.21, 223–229 (2010). ArticleCASPubMed Google Scholar
Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA300, 2886–2897 (2008). ArticleCASPubMed Google Scholar
Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull.60, 5–20 (2001). ArticleCASPubMed Google Scholar
Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet351, 173–177 (1998). ArticleCASPubMed Google Scholar
Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes59, 2400–2406 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dabelea, D. et al. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care22, 944–950 (1999). ArticleCASPubMed Google Scholar
Bavdekar, A. et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes48, 2422–2429 (1999). ArticleCASPubMed Google Scholar
Fowden, A. L. & Hill, D. J. Intra-uterine programming of the endocrine pancreas. Br. Med. Bull.60, 123–142 (2001). ArticleCASPubMed Google Scholar
Hyppönen, E., Power, C. & Smith, G. D. Prenatal growth, BMI, and risk of type 2 diabetes by early midlife. Diabetes Care26, 2512–2517 (2003). ArticlePubMed Google Scholar
King, H. et al. Diabetes and associated disorders in Cambodia: two epidemiological surveys. Lancet366, 1633–1639 (2005). ArticlePubMed Google Scholar
Wei, J. N. et al. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care26, 343–348 (2003). ArticlePubMed Google Scholar
Al Salmi, I. et al. Disorders of glucose regulation in adults and birth weight: results from the Australian Diabetes, Obesity and Lifestyle (AUSDIAB) Study. Diabetes Care31, 159–164 (2008). ArticlePubMed Google Scholar
Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet373, 1773–1779 (2009). ArticleCASPubMed Google Scholar
Pettitt, D. J. et al. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes37, 622–628 (1988). ArticleCASPubMed Google Scholar
Dabelea, D. et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes49, 2208–2211 (2000). ArticleCASPubMed Google Scholar
Stride, A. et al. Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1alpha gene mutation carriers. Diabetes Care25, 2287–2291 (2002). ArticleCASPubMed Google Scholar
Sobngwi, E. et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet361, 1861–1865 (2003). ArticlePubMed Google Scholar
Crume, T. L. et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia54, 87–92 (2011). ArticleCASPubMed Google Scholar
Pettitt, D. J. et al. Association between maternal diabetes in utero and age at offspring's diagnosis of type 2 diabetes. Diabetes Care31, 2126–2130 (2008). ArticlePubMedPubMed Central Google Scholar
Franks, P. W. et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes55, 460–465 (2006). ArticleCASPubMed Google Scholar
Lawrence, J. M., Contreras, R., Chen, W. & Sacks, D. A. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care31, 899–904 (2008). ArticlePubMed Google Scholar
Dabelea, D. et al. Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care28, 579–584 (2005). ArticlePubMed Google Scholar
Getahun, D., Nath, C., Ananth, C. V., Chavez, M. R. & Smulian, J. C. Gestational diabetes in the United States: temporal trends 1989 through 2004. Am. J. Obstet. Gynecol.198, 525.e1–525.e5 (2008). Article Google Scholar
Cauchi, S. et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med.85, 777–782 (2007). ArticleCASPubMed Google Scholar
McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med.363, 2339–2350 (2010). ArticleCASPubMed Google Scholar
Balkau, B. et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care31, 2056–2061 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schulze, M. B. et al. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care32, 2116–2119 (2009). ArticlePubMedPubMed Central Google Scholar
Lango, H. et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes57, 3129–3135 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lyssenko, V. et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med.359, 2220–2232 (2008). ArticleCASPubMed Google Scholar
Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med.359, 2208–2219 (2008). ArticleCASPubMedPubMed Central Google Scholar
van Hoek, M. et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes57, 3122–3128 (2008). ArticleCASPubMedPubMed Central Google Scholar
Talmud, P. J. et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ340, b4838 (2010). ArticlePubMedPubMed Central Google Scholar
de Miguel-Yanes, J. M. et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care34, 121–125 (2011). ArticlePubMed Google Scholar
Qi, L., Cornelis, M. C., Zhang, C., van Dam, R. M. & Hu, F. B. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am. J. Clin. Nutr.89, 1453–1458 (2009). ArticleCASPubMedPubMed Central Google Scholar
Laaksonen, D. E. et al. Physical activity, diet, and incident diabetes in relation to an ADRA2B polymorphism. Med. Sci. Sports. Exerc.39, 227–232 (2007). ArticleCASPubMed Google Scholar
Florez, J. C. et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med.355, 241–250 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia50, 1192–1200 (2007). ArticleCASPubMed Google Scholar
Grant, R. W. et al. The clinical application of genetic testing in type 2 diabetes: a patient and physician survey. Diabetologia52, 2299–2305 (2009). ArticleCASPubMed Google Scholar
Markowitz, S. M., Park, E. R., Delahanty, L. M., O'Brien, K. E. & Grant, R. W. Perceived impact of diabetes genetic risk testing among patients at high phenotypic risk for type 2 diabetes. Diabetes Care34, 568–573 (2011). ArticlePubMedPubMed Central Google Scholar
Shaw, J. E., Punjabi, N. M., Wilding, J. P., Alberti, K. G. & Zimmet, P. Z. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract.81, 2–12 (2008). ArticlePubMed Google Scholar
Mezuk, B., Eaton, W. W., Albrecht, S. & Golden, S. H. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care31, 2383–2390 (2008). ArticlePubMedPubMed Central Google Scholar
Kivimäki, M. et al. Antidepressant medication use, weight gain, and risk of type 2 diabetes: a population-based study. Diabetes Care33, 2611–2616 (2010). ArticlePubMedPubMed Central Google Scholar
Alonso-Magdalena, P., Quesada, I. & Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol.7, 346–353 (2011). ArticleCASPubMed Google Scholar
Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation121, 2331–2378 (2010). ArticleCASPubMed Google Scholar
Krämer, U. et al. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ. Health Perspect.118, 1273–1279 (2010). ArticlePubMedPubMed Central Google Scholar
Nathan, D. M., Turgeon, H. & Regan, S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia50, 2239–2244 (2007). ArticleCASPubMedPubMed Central Google Scholar
American Diabetes Association. Standards of medical care in diabetes–2010. Diabetes Care33 (Suppl. 1), S11–S61 (2010).
World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation[online], (2011).
Santos-Oliveira, R. et al. Haemoglobin A(1c) levels and subsequent cardiovascular disease in persons without diabetes: a meta-analysis of prospective cohorts. Diabetologia54, 1327–1334 (2011). ArticleCASPubMed Google Scholar
The International Expert Committe. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care32, 1327–1334 (2009).
Colagiuri, S. et al. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care34, 145–150 (2011). ArticlePubMed Google Scholar
Zhou, X. et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China. Diabetes Care33, 545–550 (2010). ArticleCASPubMed Google Scholar
Christensen, D. L. et al. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care33, 580–582 (2010). ArticleCASPubMed Google Scholar
Cowie, C. C. et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care33, 562–568 (2010). ArticlePubMedPubMed Central Google Scholar
van 't Riet, E. et al. Relationship between A1C and glucose levels in the general Dutch population: the new Hoorn study. Diabetes Care33, 61–66 (2010). ArticleCASPubMed Google Scholar
Araneta, M. R., Grandinetti, A. & Chang, H. K. A1C and diabetes diagnosis among Filipino Americans, Japanese Americans, and Native Hawaiians. Diabetes Care33, 2626–2628 (2010). ArticlePubMedPubMed Central Google Scholar
Olson, D. E. et al. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care33, 2184–2189 (2010). ArticlePubMedPubMed Central Google Scholar
Boronat, M. et al. Differences in cardiovascular risk profile of diabetic subjects discordantly classified by diagnostic criteria based on glycated hemoglobin and oral glucose tolerance test. Diabetes Care33, 2671–2673 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mostafa, S. A. et al. The potential impact of using glycated haemoglobin as the preferred diagnostic tool for detecting type 2 diabetes mellitus. Diabet. Med.27, 762–769 (2010). ArticleCASPubMed Google Scholar
Bao, Y. et al. Glycated haemoglobin A1c for diagnosing diabetes in Chinese population: cross sectional epidemiological survey. BMJ340, c2249 (2010). ArticlePubMedPubMed Central Google Scholar
Selvin, E., Zhu, H. & Brancati, F. L. Elevated A1C in adults without a history of diabetes in the U.S. Diabetes Care32, 828–833 (2009). ArticlePubMedPubMed Central Google Scholar
Mohan, V. et al. A1C cut points to define various glucose intolerance groups in Asian Indians. Diabetes Care33, 515–519 (2010). ArticleCASPubMed Google Scholar
Bennett, C. M., Guo, M. & Dharmage, S. C. HbA1c as a screening tool for detection of type 2 diabetes: a systematic review. Diabet. Med.24, 333–343 (2007). ArticleCASPubMed Google Scholar
Lauritzen, T., Sandbaek, A., Skriver, M. V. & Borch-Johnsen, K. HbA1c and cardiovascular risk score identify people who may benefit from preventive interventions: a 7 year follow-up of a high-risk screening programme for diabetes in primary care (ADDITION), Denmark. Diabetologia54, 1318–1326 (2011). ArticleCASPubMed Google Scholar
Mann, D. M. et al. Impact of A1C screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care33, 2190–2195 (2010). ArticlePubMedPubMed Central Google Scholar
Gerstein, H. C. et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract.78, 305–312 (2007). ArticlePubMed Google Scholar
Mozaffarian, D. et al. Lifestyle risk factors and new-onset diabetes mellitus in older adults: the cardiovascular health study. Arch. Intern. Med.169, 798–807 (2009). ArticlePubMedPubMed Central Google Scholar
Gillies, C. L. et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ334, 299 (2007). ArticlePubMedPubMed Central Google Scholar
Lindström, J. et al. Determinants for the effectiveness of lifestyle intervention in the Finnish Diabetes Prevention Study. Diabetes Care31, 857–862 (2008). ArticleCASPubMed Google Scholar
Buijsse, B., Simmons, R. K., Griffin, S. J. & Schulze, M. B. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol. Rev.33, 46–62 (2011). ArticlePubMedPubMed Central Google Scholar
Chen, L. et al. Maximizing efficiency and cost-effectiveness of type 2 diabetes screening: the AusDiab study. Diabet. Med.28, 414–423 (2011). ArticleCASPubMed Google Scholar
Saaristo, T. et al. Lifestyle intervention for prevention of type 2 diabetes in primary health care: one-year follow-up of the Finnish National Diabetes Prevention Program (FIN-D2D). Diabetes Care33, 2146–2151 (2010). ArticlePubMedPubMed Central Google Scholar
Makrilakis, K., Liatis, S., Grammatikou, S., Perrea, D. & Katsilambros, N. Implementation and effectiveness of the first community lifestyle intervention programme to prevent type 2 diabetes in Greece. The DE-PLAN study. Diabet. Med.27, 459–465 (2010). ArticleCASPubMed Google Scholar